
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

Fine-Grained Access Control with Attribute Based
Cache Coherency for IoT with application to
Healthcare
Piranava Tamilselvan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Tamilselvan, Piranava, "Fine-Grained Access Control with Attribute Based Cache Coherency for IoT with application to Healthcare"
(2017). Graduate Theses and Dissertations. 15627.
https://lib.dr.iastate.edu/etd/15627

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15627?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Fine-grained access control with attribute based cache coherency for IoT with

application to healthcare

by

Piranava Tamilselvan

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:

Manimaran Govindarasu, Major Professor

Doug Jacobson

 Swamy Ponpandi

Iowa State University

Ames, Iowa

2017

Copyright © Piranava Tamilselvan, 2017. All rights reserved.

www.manaraa.com

ii

DEDICATION

Dedicated to my parents – Mr. S. Tamilselvan and Mrs. V. Kokila for all their love and

support and for giving me the best always, my sister Chinmaya Tamilselvan for her unending

support and love.

Dedicated to my friends and relatives, who have supported me throughout the process. I

will always appreciate all they have done and I wouldn’t have gotten through this process if not

for them.

Also dedicated to the memories of my Grandfather Mr. Sivasambu, who always motivated

me to achieve great heights.

www.manaraa.com

iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... iv

LIST OF TABLES ... v

ACKNOWLEDGMENTS ... vi

ABSTRACT………………………………. .. vii

CHAPTER 1 INTRODUCTION .. 1

 1.1 The Internet of Things ... 1

 1.1.1 An Overview ... 1

 1.1.2 Need for Access Control in IoT Applications....................................... 3

 1.1.3 Internet of Things in Healthcare ... 4

 1.2 Thesis Motivation .. 7

 1.2.1 Access Control in IoT Environment ... 7

 1.2.2 Mitigating Query Latency ... 8

 1.3 Thesis Organization ... 9

CHAPTER 2 LITERATURE REVIEW ... 10

 2.1 End to End IoT Security .. 10

 2.2 Access Control Models in Information Security ... 11

 2.3 Attribute Based Access Control in a Cloud Environment 14

 2.4 Caching Techniques ... 16

 2.4.1 Client Side Caching .. 16

 2.4.2 Cache Consistency .. 17

CHAPTER 3 PROPOSED WORK ... 19

 3.1 Background .. 19

 3.2 System Architecture ... 20

 3.3 Fine Grained Access Control of Encrypted Data ... 22

 3.4 Client Side Caching and Attribute Based Cache Coherency 28

CHAPTER 4 PERFORMANCE EVALUATION .. 32

 4.1 Experimental Setup .. 32

 4.2 Performance Evaluation ... 34

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 41

 Summary .. 41

 Future Work ... 42

REFERENCES .. 44

www.manaraa.com

iv

LIST OF FIGURES

 Page

Figure 1 The Elements of IoT ... 2

Figure 2 An Example of an Electronic Health Record .. 5

Figure 3 The Proposed Architecture for achieving

 Fine Grained Access Control on IoT Cloud ... 21

Figure 4 Group Hierarchy – Case (i) a hierarchical tree,

 Case (ii) a hierarchical graph .. 23

Figure 5 Nested Set Model for Case (i),

 Hierarchical Graph to Hierarchical tree conversion for Case (ii),

 Nested Set Model for Case (ii) .. 26

Figure 6 Experimental evaluation ... 34

Figure 7 Evaluation of Average Latency vs Number of Grains

 with and without ABCC.. 37

Figure 8 Evaluation of Staleness vs Number of Grains

 with and without ABCC.. 39

Figure 9 Evaluation of Staleness vs Update Rate in ABCC................................ 40

Figure 10 Evaluation of Average Latency vs Number of Grains in ABCC 40

www.manaraa.com

v

LIST OF TABLES

 Page

Table 1 Assignment Table .. 23

Table 2 Patient Table before modification .. 25

Table 3 Patient Table after modification ... 25

Table 4 Nested Set Table for Case (i) ... 27

Table 5 Nested Set Table for Case (ii) .. 27

Table 6 Coarse-grains of Attribute Groups to Fine-grains

 based on data criticality levels ... 32

Table 7 An Example used for evaluating fine-grained

 Attribute Groups based on data criticality ... 37

www.manaraa.com

vi

ACKNOWLEDGMENTS

I would first like to thank my Major Professor, Dr. Manimaran Govindarasu for his

guidance, encouragement, and patience over the last two years. Thank you so much for pushing

me hard to look at research in different ways and for being my constant source of knowledge and

inspiration. You consistently steered me in the right direction whenever you thought I needed it.

I would also like to thank Dr. Doug Jacobson and Dr. Swamy Ponpandi for agreeing to be

on my Committee and taking out time to respond to my e-mails.

In addition, I would like to thank my research group for providing me valuable feedback

during all my research presentations and my friends who provided moral support and helped me

in understanding certain technicalities that I was not aware of previously.

www.manaraa.com

vii

ABSTRACT

The Internet of Things (IoT) is getting popular everyday around the world. Given the

endless opportunities it promises to provide, IoT is adopted by various organizations belonging to

diverse domains. However, IoT’s “access by anybody from anywhere” concept makes it prone to

numerous security challenges. Although data security is studied at various levels of IoT

architecture, breach of data security due to internal parties has not received as much attention as

that caused by external parties. When an organization with people spread across multiple levels of

hierarchies with multiple roles adopts IoT, it is not fair to provide uniform access of the data to

everyone. Past research has extensively investigated various Access Control Techniques like Role

Based Access Control (RBAC), Identity Based Access Control (IBAC), Attribute Based Access

Control (ABAC) and other variations to address the above issue. While ABAC meets the needs of

the growing amount of subjects and objects in an IoT Environment, when implemented as an

encryption algorithm (ABE) it does not cater to the IoT RDBMS applications. Also, given the

query processing over huge encrypted dataset on the Cloud and the distance between the Cloud

and the end-user, Latency issues are highly prevalent in IoT applications. Various Client Side

caching and Server Side caching Techniques have been proposed to meet the Latency issues in a

Client-Server Environment. Client Side caching is more appropriate for an IoT Environment given

the dynamic connections and the large volume of requests to the Cloud per unit time. However, an

IoT Cloud has mixed critical data to every user and conventional Client Side caching Techniques

do not exploit this property of IoT data.

In this work, we develop (i) an Attribute Based Access Control (ABAC) mechanism for

the IoT data on the Cloud in order to provide a fine-grained access control in an organization and

www.manaraa.com

viii

(ii) an Attribute Based Cache Consistency (ABCC) Technique that tailors Cache Invalidation

according to the users’ attributes to cater to the Latency as well as criticality needs of different

users. We implement and study these Models on a Healthcare application comprising of a million

Electronic Health Record (EHR) Cloud and a variety of end-users within a hospital trying to access

various fields of the EHR from their Smart devices (such as Android phones). ABAC is evaluated

with and without ABCC and we shall observe that ABAC with ABCC provides a lower average

Latency but a higher staleness percentage than the one without ABCC. However, the staleness

percentage is negligible since we can see that much of the data that contributes to the staleness

percentage are the non-critical data, thus making ABAC with ABCC an efficient approach for IoT

based Cloud applications.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 The Internet of Things

1.1.1 An Overview

The Internet of Things (IoT) [1] refers to the use of intelligently connected devices and

systems to leverage data gathered by embedded sensors and actuators in machines and other

physical objects. Advances in technologies especially Wireless and Mobile connectivity, Radio-

Frequency Identification (RFID), smart sensors, etc., when combined, could help realize a

miniaturized, embedded, automated Internet of connected devices communicating regularly and

relatively effortlessly. IoT promises to change our way of doing things through better information

in real-time and improves learning opportunities. IoT can improve efficiency (achieving similar

levels of impact with fewer resources) and/or enhance effectiveness (increasing impact with

similar levels of existing resources). In short, IoT is an ecosystem of inevitably related processes

and other technologies from the perspective of a goal within a specific use case.

 In many respects, it can initially look the same as M2M (Machine to Machine)

communication – connecting sensors and other devices to Information and Communication

Technology (ICT) systems via wired or wireless networks. In contrast to M2M, however, IoT also

refers to the connection of such systems and sensors to the broader Internet, as well as the use of

general Internet technologies [2]. M2M is almost synonymous with isolated systems of sensors

and islands but IoT is the ecosystem that connects these disparate vertical pillars.

www.manaraa.com

2

Figure 1. The Elements of IoT

The main components of the IoT are:

- The thing itself

- The Local Network, which moves data in and out of the device

- The Internet, from where it goes to the Cloud considering the massive amount of data

collected from various devices spread across various regions. The data stored goes to the

end-user devices at appropriate times

- End-user devices (desktop, laptop, smartphones) or enterprise data systems that receive

and manipulate data

Looking towards the applications and services in the IoT, we see that the application

opportunities are open-ended, and only imagination will set the limit of what is achievable. There

are many specialized use cases of IoT. Some of the most prominent application areas are: building

and home automation, medical and healthcare, transportation, manufacturing, Environmental

monitoring, etc.,

www.manaraa.com

3

1.1.2 Need for Access Control in IoT Applications

The greater the connected devices, the more the possibilities for cyber-attacks [4]. One of

the most prevalent concerns of implementing the IoT for any application would be the security

risks revolving around the various entities – the edge device, the network through which the transit

of data occurs and the cloud. Breaching of confidential data through any of these entities is

dangerous. In a recent proof-of-concept exploit, for example, researchers demonstrated that a

network could be compromised through a Wi-Fi-enabled light bulb [3].

Several measures are already being taken to close the holes and prevent security breaches

at the device level, and efforts are being led to tackle major disasters before they happen. A lot of

encryption and other cryptography Techniques play a crucial role in safe data generation and

transit. However, to ensure an end to end security, the Cloud has to be trusted [5]. The IoT and the

Cloud are dependent on each other. While IoT exploits the unlimited capabilities of the Cloud in

terms of storage and processing, Cloud would not be interesting if it’s not for the IoT data!

Nowadays, with a lot of trusted Cloud Service providers and with no security keys being stored on

the Cloud, we can be sure that the encrypted data stored in the Cloud would not be exposed to any

hackers trying to get illegal access to the data. However, ensuring confidentiality and integrity is

much more than mere encryption preventing only the hackers from accessing the data. To ensure

the CIA (Confidentiality-Integrity-Availability), access must be restricted to those authorized to

view the data in question. That is, no matter if it’s the people inside/outside the organization, a

resource could only be made available to a subject who is entitled to accessing it. This is to make

sure that users at various hierarchies in an organization get access to only the appropriate data.

This appropriateness would be determined by the IoT application given its nature of data and the

various types/levels of users accessing the data.

www.manaraa.com

4

Some of the popular IoT applications include Smart Home, Smart Healthcare, Smart Cities,

etc.,[6] In this work, we apply the proposed Models on a Healthcare IoT application due to the

high sensitivity and criticality of the data. In the context of an IoT Healthcare application, a patient

deserves the right to care about the privacy of his/her data. Various vital signs of patients like

Blood Pressure, heart rate, etc., would be generated and transmitted to the cloud repository. These

data along with other sensitive data in Electronic Health Records (EHR) like Social Security

Number (SSN), billing information, etc., have to be kept secret [7] due to obvious security reasons.

Many conventional end-to-end security mechanisms involving encryption would prevent

intruders/eavesdroppers from accessing these critical data. However, the data has to remain secure

internally within the organization as well. That is, which users with what privileges can have access

to which kind of data must be enforced.

1.1.3 Internet of Things in Healthcare

With the advent of IoT, Smart Healthcare is now possible. Smart Healthcare devices are

wirelessly enabled and can be used to monitor and collect data from patients suffering from various

disorders. They put the critical data, such as CT scans, test results and other records, into the hands

of patients as well as medical teams at any-time and on any smartphones or computers. The smart

devices can gather data on their own and remove the limitations of human-entered data. The

doctors can obtain the data that they need whenever they want, thus enabling them to have better

interaction with patients remotely. This process reduces the risk of error, which means increased

efficiency, reduces cost of care and increases quality of care in healthcare.

Off-line monitoring of patients has also become possible because of IoT. Healthcare

monitoring and wearable devices are capable of transmitting data from a patient’s home to the

www.manaraa.com

5

hospital. This type of automated process replaces the doctor/patient visiting by regular intervals to

check the health of the patients.

An Electronic Health Record (EHR) is an electronic version of a patient’s medical history,

that is maintained by the provider over time, and may include all of the key administrative clinical

data relevant to that persons care under a particular provider, including demographics, progress

notes, problems, medications, vital signs, past medical history, immunizations, laboratory data and

radiology reports. Given the digital nature of an EHR, information is available whenever and

wherever needed. Healthcare professionals claim that with the data, timeliness and availability of

EHRs, better decisions and more coordinated care are made possible.

Figure 2. An example of an Electronic Health Record (Note: The individual is fictional)

Internet of Things is helping hospitals avoid, mitigate, or predict adverse events by

focusing on integrating medical devices into a smart network of monitoring tools linked to the

www.manaraa.com

6

EHR. A lot of providers are working on integrating and streamlining all of the patient-generated

health data in their EHRs. The real time data from sensors, tablets, smartphones, and peripherals

will soon be captured in EHR.

The HIPAA Security Rule establishes national standards to protect individuals’ electronic

personal health information that is created, received, used, or maintained by a covered entity (a

healthcare provider in our context). The Security Rule requires appropriate administrative,

physical and technical safeguards to ensure the confidentiality, integrity, and security of electronic

protected health information. [8]

 In an IoT connected Healthcare system, the CIA terms could be appropriately defined as

the following:

- Confidentiality: the EHRs of patients are given access only to the professionals who have

the adequate access privileges

- Integrity: the EHRs of the patients can be altered only by the professionals who have the

adequate access privileges

- Availability: the EHRs of the patients and the other services revolving it should be

available to the appropriate professionals without any conflict whenever needed

The HIPAA requirements ask the patients (IoT data owner) to check if the following security

features are addressed for his/her practice.

- ePHI encryption

- Auditing functions

- Backup and recovery routines

- Unique user IDs and strong passwords

www.manaraa.com

7

- Role- or user-based access controls

- Auto time-out

- Emergency access

- Amendments and accounting of disclosures

1.2 Thesis Motivation

1.2.1 Access Control in an IoT Environment

There are a variety of Techniques for providing security to the data that are transmitted and

stored in the cloud [9]. However, most of these Techniques’ main vision is to keep the data safe

and secure from the third parties. This is inconsistent with the data sharing requirements of most

real-world applications. The solutions to manage and provide internal security to the massive

volume of data produced and stored by the IoT objects are yet to mature.

There are few Access Control methods that might suit various IoT applications. The

literature survey shows that there is some good amount of cryptographic Techniques that would

help to achieve the given fine grained access control by allowing the data to be decrypted only by

the people with appropriate privileges. However, it is also evident that such cryptographic

Techniques are implemented assuming an unlimited amount of computation and energy, which

unfortunately cannot be provided by the IoT devices.

There are few light-weight access control encryption protocols [9,12] that can account for

the resource constraints of a typical IoT device and can give the device the ability to encrypt based

on appropriate access control policies and store in the cloud. The decryption can be done at a

trusted proxy or at the client. However, these protocols are more suited to file-systems on the cloud

rather than conventional DBMS which sound to be a more sensible storage option when it comes

www.manaraa.com

8

to storing EHRs on the Cloud. This thesis work addresses this problem of providing a fine grained

access control to the EHR data stored on the cloud and at the same time taking into account the

various resource constraints of an IoT device in healthcare.

1.2.2 Mitigating Query Latency

 In an IoT application say Healthcare, which comprises of a variety of entities like doctors,

nurses, practitioners, medical students, administrators, accountants, etc., every user would be

interested in a particular type of data. For example, doctors belonging to the oncology department

would be more interested in the vitals of patients diagnosed with cancer, while the accountants

would be more interested in the billing information and other monetary details of the patients. That

is, every type of user, based on his role will have his/her very own interest space. This results in

the user querying for the same data over and over. We can try to exploit this nature of the user’s

workload to obtain the results faster.

Caching is an obvious solution to provide faster retrieval of frequently used data. However,

when it comes to real-time IoT like a Smart Healthcare Environment, we might have to consider

various factors into account when it comes to caching: if there is enough storage capacity at the

Caching Node, how frequently we are allowed to hit the stale data and which kind of data can

never go stale in the cache. In addition to this, we must also make sure that there is not a lot of

contacts made between the server and the client in the process of ensuring cache consistency

because in an IoT Environment where there would be a huge number of clients subscribing to a

server, letting a lot of connections open is not a wise idea. This problem of providing a caching

option for a healthcare IoT scenario is also considered and addressed in this thesis work.

www.manaraa.com

9

1.3 Thesis Organization

The rest of the thesis work is organized as follows:

- Chapter 2: a literature survey of the existing access control mechanisms and caching

approaches in a Client-Server Model

- Chapter 3: proposal of an Attribute Based Access Control mechanism and the method of

achieving it in a conventional RDBMS. The chapter also deals with the proposal of novel

Attribute Based Cache Coherency that would provide a faster query retrieval while

adhering to the criticality requirements of the data

- Chapter 4: experimental evaluation

- Chapter 5: conclusion and future work

www.manaraa.com

10

CHAPTER 2. LITERATURE REVIEW

 As discussed in Chapter 1, there is a lot of work done on the various security mechanisms

that could guarantee an end-end security in an IoT Environment.

2.1 End-to-End IoT security

 When a data is said to be End-to-End secure, it means that the data is not prone to external

attack right from the time of data generation until the time of data consumption. In terms of IoT,

the data has to be secure when it is generated at the sensor and it has to maintain the same level of

security until it reaches the end-user. We can divide the end to end security into two phases: i)

Phase I – security while data generation and transmission to the Cloud and ii) Phase II – data

security while residing in the Cloud.

 Traditionally, we use AES for most of the security demanding applications. However, the

cost demanded by these traditional security algorithms are pretty high for an IoT device. An IoT

device which is considered to be constrained in terms of energy and computation needs algorithms

that would suit their specifications. A lot of work has been done on the chip level security of the

IoT devices. In the literature, a lot of light weight cryptography algorithms like PRESENT [12]

have been proposed for the IoT producer devices like the sensors. So using these feasible and light

weight encryption algorithms, the produced data can be encrypted and thus sent to the Cloud in a

secure way, sparing any sort of attack that might happen during the transit.

 Cloud security is also widely studied and nowadays, the Cloud Service Providers encrypt

the data before storing them [13]. Cloud security solutions for a lot of IoT applications like Smart

Grid [14], eHealth [15], Robotics [16] have been proposed. All these methods proposed in the

literature, together can help achieve the end-to-end security in an IoT Environment, by keeping

www.manaraa.com

11

the data encrypted until the end-user decrypts it. However, they don’t take into account the various

loopholes that are inside the organization like inappropriate users accessing critical data, leakage

of sensitive information from inside parties to the wrong hands, etc. So a proper access control that

meets the IoT constraints and at the same time restricts inappropriate users from having access to

certain data has to be implemented.

2.2 Access Control Models in Information Security

At the cloud, when the data is encrypted and secure, we can trust that no other third party

gets access to the data. However, in order to ensure a secure way of data sharing within the

organization, some kind of access control mechanism has to come into picture. In the field of

information security, access control means prohibition of irrelevant users from accessing data that

are beyond their rights and privileges. Some of the established access control schemes are:

Mandatory Access Control (MAC), Discretionary Access Control (DAC), Role Based Access

Control (RBAC) and Attribute Based Access Control (ABAC).

 Under MAC, Bell-LaPadula [17] Model deals with the confidentiality of the information

and Biba Model deals with the integrity of the information. The Models had a similar hierarchical

approach that would prevent unrestricted users to read/write a restricted file. This is achieved by

assigning certain labels to the subjects and objects: Top Secret (highest priority), Secret,

Confidential and Unclassified (least priority), that dictates that a subject assigned with a particular

label would only be able to access the objects that are below the level of his/her label. This was

sufficient in a computer system where a course-grained access control was sufficient. But in the

context of IoT where there would be plenty of users accessing the data, categorizing them into a

handful of labels would not serve the purpose of restricting various kinds of users from accessing

www.manaraa.com

12

undesirable data. Thus MAC fails to provide a fine-grained Access Control for the huge amount

of IoT data.

 On the other hand, DAC [18] resolves to provide a pretty fine-grained access control by

using the concept of Access Control Matrix / Access Control Lists. This list has the details

containing which user is authorized to provide which resource. Although this provides a great

distinction among users, the granularity is so fine-grained that it cannot be adopted for an IoT

Environment given the huge volume of data on the Cloud and also the huge volume of users trying

to access the data. In other words, maintenance of such a large Access Control List would be so

arduous in an IoT Environment.

 Role Based Access Control [19] is an alternative approach that gained a great importance

in cloud security. It is about providing access rights based on the roles possessed by the user in an

organization. It combines the properties of MAC and DAC and implements a good level of

granularity among the users. The RBAC has two separate mappings: i) one from the various users

to various roles and ii) one from various roles to privileges. To elaborate, role is an abstraction to

create the user behavior and their assigned duties. In this way, access to an object is permitted

based on the user’s role and not the user himself. That is, RBAC provides a means of naming and

describing many-to-many relationships between individuals and rights unlike a one-one relations

in the case of DAC. Also in RBAC, when the roles are removed or revoked, it is not mandatory to

change the access permissions that are assigned to that roles. This scheme overcomes the

disadvantages of the previous Models and it is more flexible paving way for many enterprises and

organizations to formulate their access policies without violating their organization structure and

policies. This kind of approach makes real-time cloud based data access control more practical.

Works like [20] and [21] have focused on implementing the RBAC scheme in a Cloud architecture

www.manaraa.com

13

to ensure security and at the same time maintain the properties of an organization’s hierarchy.

However, researchers soon realized a serious problem with RBAC called ‘Role Explosion’ [22] in

large enterprises. Role Explosion is due to the necessity of thousands of roles being fashioned for

different collections of permissions. In addition to the role explosion problems, RBAC also

suffered from role management problems since it was difficult to retain and reallocate the roles

and permissions for users after change of their positions and job titles in the organization hierarchy.

Although the identity management problem is well understood in RBAC, research performed over

the last several years suggests that the separate problem concerning the proliferation of roles is not

generally appreciated within the academic and practitioner communities.

 In order to overcome the drawbacks of RBAC, Attribute Based Access Control (ABAC)

[23] came into picture. ABAC realizes that one of the main problems with the design of RBAC is

its two-way mapping: user to role and role to object. ABAC converges this two-way mapping to a

single-way mapping – users with attributes to objects with Access Control Policies (ACP). In an

ABAC Model, every user will be given various attributes and every object will be assigned with a

particular access control policy that might suit its nature. For example, in a healthcare IoT, a user’s

attributes could be (doctor, oncology, level=3), (nurse, oncology), (medical student), etc., An

object on the other hand would be the medical data like the EHRs. In this case, the data of a cancer

diagnosed patient would be assigned with an ACP that would look like (doctor AND oncology),

resulting in the access of this particular data only by users owning both the ‘doctor’ and ‘oncology’

attributes. ABAC systems can create a variety of definitions and very fine-grained purposeful

expressions. Some examples would be:

- An early stage cancer patient’s data could be defined with an ACP (doctor AND oncology)

OR (nurse AND oncology)

www.manaraa.com

14

- A critical cancer patient’s data could be defined with an ACP (doctor AND oncology AND

level>3)

In this way, ABAC makes the system design more flexible and more scalable. ABAC’s working

is mainly based on analyzing the user’s attributes and thereby restricting the unauthorized users

from having access to sensitive data. Thus we observe that an ABAC Model would suit the IoT

applications better than any other access control Models.

2.3 Attribute Based Access Control in a Cloud Environment

 A good amount of work exists in the literature that implements an ABAC scheme in a

Cloud Environment [24-28]. Almost all of the implementations are based on using the Attribute

Based Encryption [23] Technique since the data on the cloud has to go encrypted. Two variants of

ABE were also proposed based on various use cases:

- Cipher text-Policy ABE (CP-ABE) [29]: A secret key is associated with user’s attributes

and Cipher-text is labeled with an ACP

- Key-Policy ABE (KP-ABE) [30]: Attributes are used to describe the Cipher-text and

policies are built into users’ keys.

CP-ABE is observed to be more suitable in a Cloud Environment. Before uploading data files to

the cloud server, the data owner can specify an ACP and encrypt data under this policy. Only such

users whose attributes satisfy the policy can successfully decrypt the encrypted data using their

secret keys.

 A variety of works focus on the hierarchy issues [31], attribute revocation and policy

updating issues [28, 32, 33] in an ABE scheme. But all these works assume the source of

encryption to be computationally powerful to perform an expensive cryptographic algorithm.

www.manaraa.com

15

However, in most of the IoT applications where the source data are from WSNs and other resource

constrained devices, a full-fledged ABE would not be feasible. Works like [34-36] focus on

developing a lightweight ABE approach to suit an IoT Environment by incorporating some pre-

processing and tweaking of the traditional ABE algorithm. Although this kind of encryption

scheme answers the question of energy efficiency in IoT devices, this might not be suitable for all

kind of IoT applications. It might be applicable for individual file systems, which can be encrypted

using the light-weight ABE and be stored on the cloud and at the other end can be decrypted by

the appropriate users. But for applications demanding a relational database storage on the Cloud

like the EHRs, this might not be a suitable option. This is because an ABE or any of its variants

would not accommodate an encrypted query processing on the dataset. So we shall conclude that

ABE is not the right way to achieve ABAC for IoT systems demanding a relational database

system.

 Along those lines, DBMask [37] is the first practical implementation of an ABAC on

relational databases. DBMask proposes a novel Technique that separates fine grained access

control from encrypted query processing when evaluating SQL queries on encrypted data and

enforces fine grained access control at the granularity level of a column, row and cell based on an

expressive attribute-based group key encryption scheme. DBMask is inspired by the CryptDB

project [38, 39], which is the first research effort that has systematically investigated access control

for SQL queries on encrypted relational data. However, DBMask overcomes some of the

limitations of CryptDB related to encrypted query processing and fine grained access control. In

DBMask, each cipher-text is only a single layer of encryption as opposed to onions of layers of

encryption in CryptDB and the cipher-text supports comparison operation. Also unlike CryptDB,

the data are never decrypted to weaker encryptions inside the cloud server and therefore the

www.manaraa.com

16

security of the data does not weaken over time. However, both DBMask and CryptDB are designed

with web applications in mind and is not suitable for IoT application scenarios because: they rely

on a trusted proxy which intercepts the communication and applies encryption/decryption

transparent to the user. This approach apart from causing security conflicts also adds a computation

overhead of 25% [40].

 Talos [40] is a system that is developed exclusively for IoT applications, that stores the IoT

data securely in a Cloud database while still allowing query processing over the encrypted data.

Talos architecture, combined with the fine-grained access control mechanism proposed by

DBMask would help us in achieving a fine-grained access control for the huge amount of IoT data

stored in a Relational Database Cloud Systems.

2.4 Caching Techniques

2.4.1 Client Side caching

Caching is one of the best solutions to account for the Latency problems in most of the

Client-Server applications. In a Client-Server Environment, caching can be done at any end – at

the Client or at the Server. In conventional relational database systems, caching is done at the

Server Side [41, 42] in order to reduce disk traffic by storing the frequently used pages in the

cache. However, in order to hit this cache, a query has to be sent through the network to the server.

This had been happening under the assumption that the Client Side is not capable enough to hold

the frequently hit data. But given today’s smart phones (the primary IoT consumer devices), their

capability is not just limited to sending queries but also storing certain data and querying over the

stored data is easily possible. A lot of study has been done on the various ways to achieve Client

Side caching [43-46].

www.manaraa.com

17

Client Side caching is appropriate to our application, given the diverse needs of various

users belonging to the organization. Based on the roles and privileges of different users, they might

have different interest spaces. Server Side caching might not be applicable to this scenario, where

the data requirements are disjoint and there is no guarantee that the consequent users would need

the same data. Client Side caching proves to be a better choice for our given IoT application

because each client can have his/her own interest space based on their attributes. It also reduces

network traffic by serving the queries locally rather than sending every single query to the server.

2.4.2 Cache consistency

 One of the main factors while designing a cache Model is deciding on the cache consistency

method. Data can be invalidated at appropriate instances to maintain the data consistency in the

cache. The invalidation Techniques can be divided into two categories: server initiated (push-

based) invalidation and client initiated (pull-based) invalidation. Server initiated invalidation sends

an Invalidation Report(IR) to the appropriate clients at the appropriate time, thus invalidating

potential inconsistent data. The methods proposed in literature for server initiated invalidation can

be broadly classified into two broad categories: stateless [47], where every update has to be

broadcasted through IRs to all clients periodically and stateful [48, 49], where metadata has to be

maintained about particular clients and any update has to be multi-casted to appropriate clients

who are interested in a particular data. The greediness of the stateful approach and the maintaining

of metadata and the network traffic that could be caused by stateful approach make server initiated

invalidation unsuitable for our application. Client Side invalidation methods proposed in the

literature can again be broadly classified into: client polling [50], where a client polls the server at

regular intervals to check if the cache is up-to-date and TTL based Techniques [51-54], where a

heuristic Time-To-Live (TTL) are applied for every entity of the resource, which the client caches

www.manaraa.com

18

in addition to the data. The data is deemed to be invalid if the corresponding Time-To-Live in the

Cache expires. Client Polling, again creates a lot of contact between the client and the server. TTL

is the most inexpensive method in terms of network traffic compared to all the given methods.

However, TTL can create ambiguity between the strong and weak consistency Models.

The lower the TTL, higher the data consistency and vice-versa. In a healthcare application, the

critical data could be assigned with a lower TTL while the non-critical data could be assigned with

a higher TTL, so as to reduce the number of total queries to the server. A variety of Techniques

for TTL assignment including a lot of adaptive TTL schemes have been proposed in the literature

[55, 56]. But none of the works consider the diverse type of users and the various levels of

criticality the users hold towards various data. If this is considered and if a caching with an

appropriate cache consistency is designed, we can further reduce the average Latency.

www.manaraa.com

19

CHAPTER 3. PROPOSED ATTRIBUTE BASED ACCESS CONTROL WITH

ATTRIBUTE BASED CACHE COHERENCY

3.1 Background

In an Internet of Things scenario, there are two types of people: i) data producers and ii)

data consumers. Data producers could be sensors, aggregators or other others who push data

periodically/aperiodically to the cloud. Data consumers could be actuators or the end-users who

need the produced data for observation and to gain other meaningful insights. Since the data

producer devices mostly comprise of wireless sensor networks and embedded devices, they are

already widely studied in terms of their resource constraints (computation, communication and

other security concerns). On the other hand, the end-devices on the consumers’ end are still prone

to issues like network congestion due to enormous number of users sending uplink/downlink

requests, power consumption of the client devices, Latency constraints given the time-criticality

of an application and unauthorized data access.

From the perspective of a Healthcare IoT, we consider two major issues: i) unauthorized

access of data by the internal and external stakeholders of EHR. Internal stakeholders of the EHR

involves the hospital staff and the external stakeholders involves government agencies, insurance

agencies and other vendors. An important attribute of EHR is that the EHR of a patient can be

shared between more than one health organization. Considering this vast number of users of the

EHR data, the Healthcare IoT should be made completely secure by allowing only the authorized

users to access their corresponding data and ii) the time-criticality of data. A Healthcare IoT is

considered to be the most time-critical IoT application today. So the end-users will expect the

required data to be available to them within a reasonable deadline. For instance, a group of

www.manaraa.com

20

specialty doctors observing a critical patient might not have the patience to wait for a long time

for the queried data.

To overcome these two issues, this thesis proposes the following approaches: i) a modified

DBMask architecture by applying Talos to make it suitable to the IoT applications. We utilize the

attribute based grouping and query rewriting Technique similar to the approach proposed in

DBMask. We extend this work to account for hierarchical groups and appropriate query rewriting.

By applying Talos, we eliminate the proxy, thus securing the keys at the client and also by reducing

a significant amount of computational overhead to fit DBMask into the IoT scenario and ii) a novel

client-Side caching Technique that takes into account the granularity of criticality of data across a

wide variety of user groups obtained from (i). The idea here is that for a particular group of users,

a particular field might be highly critical and consistency of the data cannot be compromised.

However, there could be another group of users who also have access to the same data but they

can tolerate staleness to a particular threshold. An example could be, the users belonging to the

Admin department might have access to few of the vitals like weight of a patient. They would need

the information just to fill some forms or files that’s not really highly significant. On the other

hand, there could be a group of medical students who observe the patients as a part of their training.

They can tolerate some amount of staleness of the weight data as they wouldn’t encounter critical

patients. However, a group of dieticians have to know the most recent weight data in order to

observe the sudden drop/gain of weight of a particular patient. That is, the level of criticality

depends on the attributes of the end-user.

3.2 System Architecture

The architecture that is suitable for achieving a fine-grained access control of data with minimum

Latency across users in IoT applications is given in Figure 3.

www.manaraa.com

21

Figure 3. The Proposed Architecture for achieving Fine Grained Access Control on IoT Cloud

with Minimal Average Latency

Here, encrypted EHR along with periodic vital values collected from the IoT devices like

wearable devices and other fitness trackers like Fitbit are stored in a secure RDBMS in the Cloud.

This forms the data producer and the storage parts of the architecture. Data consumers for this

application include mobile and web apps through which the hospital staff view the patient data.

Here due to the vast amount of work done at the Cloud level and device level security, we assume

that the data is secure during the commute between the IoT devices and the Cloud and also at the

Cloud. We propose a query rewriting Technique based on the attributes of the hospital staff to

achieve the fine grained access control of data. Also, we shall see a local cache at the Client Side,

which stores the data queried from the Cloud Server.

3.3 Fine Grained Access Control of Encrypted Data

There are some key definitions involved in the approach:

DEFINITION 1 – Attribute

Attributes are entities such as roles, department, level, etc., that a person holds in an organization

Example:

www.manaraa.com

22

Attributes of User 1 - doctor, oncology, 3

Attributes of User 2 - receptionist, admin department

DEFINITION 2 - Access Control Policy

Let T be a table. On T, an ACP (c, p) can be defined, where c is a particular cell of T and p is the

policy pertaining to c. This p is a combination of attributes and Boolean operators.

Example:

ACP over a critical cancer patient’s data – (doctor AND oncology AND level > 3)

ACP over the billing information of a patient – (account)

DEFINITION 3 - Groups

A group is a set of users satisfying the same attribute conditions.

Groups are obtained by converting ACP into Disjunctive Normal Form(DNF). For every distinct

disjunctive clause, a group is formed.

Example:

Let’s assume an ACP (c,p) defined over a cell c : (A1) AND (A2 OR A3), where A1, A2 and A3

are the attributes

After converting to the DNF, ACP (c,p) becomes : (A1 AND A2) OR (A1 AND A3).

Now users satisfying the clause (A1 AND A2) become group G1 and users satisfying the clause

(A1 AND A3) become group G2.

www.manaraa.com

23

DEFINITION 4 - Group Hierarchy

Group Hierarchy is a partial ordered tree obtained by linking the relationship between various

groups created. The root node forms the most privileged group.

An example of this hierarchy is given in Figure 4. Based on the organization hierarchy, different

structures of groups hierarchy can be formed as seen in Figure 4 (Case (i) – a hierarchical tree,

Case (ii) – a hierarchical graph)

Figure 4. Group Hierarchy – Case (i) a hierarchical tree (top), Case (ii) a hierarchical graph

(bottom)

PHASE I: System Initialization

Decision of ACPs:

The EHR vendor in consultation with the healthcare authority determines the list of ACPs

and puts them in a table in the RDBMS on the cloud. ACP to Groups conversion also occur at this

step. The resultant table is the Assignment table, an example of which is show in Table 1.

www.manaraa.com

24

Table 1. Assignment Table

Table Column Condition ACP Groups

Patient ID, Name, Diagnosed,

Severity, <Other vitals>

Severity = ‘High’ (Oncology AND

Specialist)

G4

Patient ID, Name, Diagnosed,

Severity, <Other vitals>

Severity =

‘Medium’

(Oncology AND

Biopsy AND

(Doctor OR

Nurse))

G5, G6

Patient ID, Name, Insurance,

SSN, Billing_info

 (Accounts) G3

Appending additional columns to the existing main tables:

In addition to the required columns, the table structure is modified to add one comparison

friendly column to every existing column (see Table 2 vs Table 3). These columns are known as

the corresponding label columns of the respective columns. The cells of these columns contain the

name of the group, who has access to the corresponding data column. This information is obtained

from the Assignment table. Please note the insurance and billing_info columns are not illustrated

in the example tables given the space restrictions.

Table 2. Patient Table before modification

ID Name Diagnosed Severity <Vitals> SSN

1 Alice Cancer High … xxx-xx-xxxx

2 Bob Cancer Medium … xxx-xx-xxxx

3 Carol Cancer High … xxx-xx-xxxx

www.manaraa.com

25

Table 3. Patient Table after modification

ID ID_labe

l

Name Name

_label

Diagnosed Diagnosed

_label

Severity Severity

_label

<Vitals

>

<Vitals

>_label

SSN SSN

_lab

el

1 G3, G4 Alice G3,

G4

Cancer G4 High G4 … G4 xxxx

-xx-

xxxx

G3

2 G3, G6 Bob G3,

G6

Cancer G6 Medium G6 … G6 xxxx

-xx-

xxxx

G3

3 G3, G4 Carol G3,

G4

Cancer G4 High G4 … G4 xxxx

-xx-

xxxx

G3

However, when more than one group is obtained from the Assignment table and if the

groups have a link in the group hierarchy, the node whichever acts as the child (the less privileged

group) is given to the label columns. We use the Nested Set Model to represent the hierarchies in

RDBMS and determine the relationship between various nodes. This relationship is given in Table

5, 6 and a similar Technique that is discussed in Phase III Group Retrieval Query is used to obtain

the group names.

Populating attribute information:

Various users, their attributes, their authentication details, and the associated group names

are loaded on the Cloud server into the User-Attribute Table and the Group Tables respectively.

Group Hierarchy in RDBMS:

The hierarchy of the created groups is stored in the table form using the Nested Set Model

in the Cloud database. In case of a hierarchical graph structure, the graph is converted into a

www.manaraa.com

26

hierarchical tree and then the Nested Set Model is applied over the obtained tree as indicated in

Figure 5.

Figure 5. Nested Set Model for Case (i) (top), Hierarchical Graph to Hierarchical tree

conversion for Case (ii) (bottom left), Nested Set Model for Case (ii) (bottom right)

PHASE II: Data Producer End - Data Encryption and Insertion

There are constant data inserts/updates from the producer end, which could be from the

sensors or directly by the hospital staff observing the corresponding patients. All these data are

encrypted using appropriate lightweight algorithms and uploaded into the Cloud server.

PHASE III: Data Consumer End - User Query and Data Retrieval

User’s actual data query is split into two different queries: i) the group retrieval query based

on the attributes of the user. It is executed over the User-Attribute table to obtain the attributes, the

Group Table to determine the attributes’ group and the group hierarchy table to obtain the child

group(s) ii) the query which is rewritten using the group names obtained from (i).

www.manaraa.com

27

For an example in case (i), let’s assume that a particular login of a user gives the Attributes

<Oncology, Biopsy, Doctor> from the User-Attribute Table and group G5 from the Group Table.

The user queries for the Patient ID, Name and other vitals for the Patient ID:2. The query on the

Nested Set Table [see Table 4, 5] in this case is:

The results obtained from Query 1 are G5 and G6. The Query 2 generated by the user gets rewritten

to Query 3, which gets executed on the modified patient table. Now the Cloud server returns the

Query 1: Group Retrieval Query

SELECT DISTINCT b.group_name

FROM nested_set a, nested_set b

WHERE a.group_name = 'G5'

AND b.left_label >= a.left_label

AND b.right_label <= a.right_label

www.manaraa.com

28

encrypted results of Query 3 to the user’s device, which then decrypts and displays the results to

the user.

Thus the user successfully retrieves the Name and other vitals of Patient ID:1. If the same

user queries for the Patient ID, Name and other vitals for the Patient ID:1 or the SSN detail of any

patient, no data will be retrieved. This is because the group G5 is not entitled to viewing any of

these data and the rewritten query ensures this access control.

3.4 Client Side Caching and Attribute based Cache Coherency

As discussed above, minimal Latency is very important in an IoT Environment. We

propose a novel Attribute Based Cache Coherency Technique for a Client Side cache. We have a

remote cloud server from where the data is retrieved from and the local Client cache that stores

the queried data based on an appropriate invalidation scheme. The invalidation scheme takes into

Query 2: Actual query

SELECT Pid, Name, <Vitals>

FROM Patient

WHERE Pid = 2

AND b.right_label <= a.right_label

Query 3: Modified Query

SELECT Pid, Name, <Vitals>

FROM Patient

WHERE Pid = enc(2)

AND (Pid_label LIKE ‘%G5%’ OR Pid_label LIKE ‘%G6%’)

AND (Name_label LIKE ‘%G5%’ OR Name_label LIKE ‘%G6%’)

AND (<Vitals>_label LIKE ‘%G5%’ OR <Vitals>_label LIKE ‘%G6%’)

www.manaraa.com

29

account the fact that different data can be of different criticality to different groups of users. It is

not really necessary to maintain a uniform Latency across all groups of users. From an end-user’s

perspective, there are some data that are highly critical while the rest wouldn’t be as critical. When

we say that a data is critical to the user, we emphasize on a couple of factors: i) the user is expecting

the most recent version of the data and ii) the user tends to query this data more frequently than

the other data.

The conventional Client Side caching stores the recently queried values in the Client’s

cache and retrieves values from the cache the next time the same query or a subset of the query is

posed, thus bypassing the communication to the server. When caching comes into picture, a couple

other factors must also be taken into account – cache replacement policy and cache consistency.

Given the sufficient memory space in most of the smart devices used to view the data and also

given the limited number of queries posed by the user in a day, a highly stringent cache

replacement policy is not desirable. We stick to the traditional LRU based data replacement policy,

which would be applicable to our scenario as well. On the other hand, there are a variety of

invalidation Techniques to maintain the consistency of the cached values at the client. Given the

enormous amount of overhead with the server initiated invalidation Techniques in an IoT

Environment, we go with the client initiated TTL(Time-To-Live) based invalidation Technique.

Here the key is that the data in the cache is no longer trustable once the corresponding TTL expires.

T1 – T2 > TTL

After the TTL expiration, the client has to fetch the data from the Cloud and the same process goes

on. However, by considering a uniform TTL for fields across various clients, the problem of a

huge number of clients in an IoT Environment still exists. The cost of hitting the Cloud is going to

be the same for all the clients, but the benefit obtained is not the same across all the clients. In

www.manaraa.com

30

order to achieve a better cost-benefit factor, we have to make sure that the clients who might not

be benefitted by fetching a certain data shouldn’t be spending more than how much that data would

benefit the client. Based on this, we shall modify the existing TTL invalidation Technique to suit

our needs. The TTL dictates when the client should reach out for the server and when it has to look

for data within itself. So if we could tailor the TTL values according to the criticality needs of

various clients, we can actually reduce the total number of requests hitting the server. Also, the

cost and the benefit for a particular data for a particular client would be balanced.

Now the task at hand is to assign TTL values to the various fields. It is completely

reasonable to assign different TTL values to different fields. Because certain fields like age,

location, etc., are long lived, while certain fields like the BP, glucose and other vitals would rapidly

go stale in the cache. Here, there are only two criticality levels: low (data that are long lived) and

high (data that rapidly change). So a longer TTL value can be assigned to the high critical fields

and a shorter TTL can be assigned to low critical fields. Similarly, there could be more number of

criticality levels. We shall further tune the TTL assignment to exploit the granularity in criticality

of a particular field to a particular user. That is every group of users has a certain tolerance to

certain kind of data. Considering the variety of roles and the corresponding nature of the job, a

data cannot be of the same criticality to all groups of users. It should be categorized into a particular

level of criticality only based on how relevant or important it is to perform the job of a particular

user group. So based on how critical a particular data is to a particular user group, every user group

has its own tolerance towards a particular data based on which the criticality is determined. That

is when a user has more tolerance towards a data, the data is assumed to be less critical for the user

and the vice versa. Based on this tolerance of a user group (determined by the user’s attributes) to

a data, we shall tune the TTL of a field in the Client’s cache accordingly. That is when the user

www.manaraa.com

31

group is more tolerant to a particular data field, it means that he can tolerate a certain degree of

staleness. So it’s wise to assign the user group with a higher TTL value for the given data field.

Similarly, when a user group is less tolerant to a particular data field, it means that he cannot

tolerate staleness beyond a very less degree. So we must assign the user group with a lower TTL

value for the given data field. By doing this, we actually cut down the total number of requests

going to the Cloud at a given time. This clears traffic for the critical queries that demand data from

the Cloud server, thus resulting in a comparatively lesser Latency.

In Table 6, every cell is a grain and the notations used in each cell is used to depict the

number of subjects belonging to the particular grain. As we discussed above, initially when ABCC

in not used there are only two grains – low and high. Using ABCC, we try to make these coarse

grains into fine grains by creating a new grain at every level and moving some people across to

the newly created grain. C1, C2, C3 etc., are called the Grain constants, which determine how

many people are moved from the high criticality grain to the newly created medium criticality

grain. The Grain constants would range from 0.01 to 0.99. In the table the TTL is increasing from

left to right, with the left most being TTL 0 where the queries always have to go to the server and

the right most being TTL infinity where the queries always go to the cache. For example, consider

the field ‘weight’ in an EHR. The field could change somewhat rapidly for someone who is

undergoing rigorous diet changes or for someone who is under a variety of medications. While,

this field could be of high criticality to subjects with Attributes <Department: Nutrition, Dietician>

or other attribute sets who keep track of the weight of the patient constantly, it could be of medium

criticality to <Department: Nutrition, Medical Students> and could be of low criticality to

<Department: Admin>. So if we cut down the number of subjects in the high criticality group, the

www.manaraa.com

32

traffic in the Cloud at a time gets reduced and thus the average Latency for a query would also

decrease as the number of grains increase.

Table 6. Coarse-grains of Attribute groups to Fine-grains based on data criticality levels

Number of

Grains

Always to

Server (High

critical)

Cache y

(Criticality decreases towards the right)

N = 2 X Y

N = 3 (1 - C1).X C1.X Y

N = 4 (1 - C1).X (1 – C2).C1.X C2.C1.X Y

N = 5 (1 - C1).X (1 – C2).C1.X (1 – C3).C2.C1.X C3.C2.C1.X Y

... … … … … …

By implementing this attribute based Client Side caching, we tailor the caching scheme

according to the user needs. This way, we can ensure better Latency without compromising the

consistency of the critical data for a user group.

www.manaraa.com

33

CHAPTER 4. PERFORMANCE EVALUATION

4.1 Experimental Setup

A basic IoT testbed has to be established to simulate the proposed approach. The actual

architecture consists of the IoT producer devices, Cloud server and IoT consumer devices. Since

the implementation is going to remain the same at the IoT producer devices, we form a testbed

only with the Cloud server and an IoT consumer device. The following platforms were used for

implementation: i) An Android Asus Google Nexus that is used as an IoT consumer device (the

Client). It has an in-built local database called the SQLite, which can be used as the local cache

and ii) Amazon Web Services – Relational Database System (AWS RDS) is used for implementing

the Cloud server. We assume that the EHR information of the patients collected by the hospital

staff and the incoming sensor values are stored encrypted in the Cloud. The encryption algorithm

that is used for encrypting the String data is Advanced Encryption Standard in Cipher Block Chain

mode (AES-CBC), while the one used for encrypting numerical data is Order Preserving

Encryption (OPE), which preserves the numerical ordering of plain-texts. We use it in our

implementation because when we consider querying over encrypted data, we have to take into

account the various types of operators that the user may use: =, <>, >, <, >=, <=. BETWEEN,

LIKE and IN. Now we have adequately encrypted values in the Cloud server, that can cater any

type of query. The specifications of various components are given in Table 6. A testbed is setup

using the given components for performing extensive experimentation.

www.manaraa.com

34

Figure 6. Experimental Setup

To understand our proposed architecture in terms of the evaluation platform, consider the

following sequence of steps:

- A user query is sent from the Android device

- Before sending the user query, the Android device does the following:

o checks if the data is in the local SQLite database (after making the appropriate cache

invalidation). If yes, it decrypts and displays the data to the user

o If no, the device rewrites the existing query and sends it to the Cloud

- A connection to the Cloud is made from the Android device by establishing a HTTP

connection between the device and the Cloud using the server’s hostname and port number

provided by Amazon Web Services

- Encrypted Query Processing happens over the data on the Cloud and the result is returned

- The Android device stores the obtained encrypted results in the local cache

- It then decrypts the data and displays it to the user

www.manaraa.com

35

4.2 Performance Evaluation

For the evaluation purpose, we run the queries on the main data table on the Cloud

comprising of a million encrypted rows with 25 actual columns. We append 25 additional

comparison friendly columns for every actual column. The actual database size is 75 MB with the

additional columns compromising of around 20MB. The other tables like the assignment table and

the group table account for a negligible 0.05MB together. Since the Cloud server provides a very

good amount of storage at a reasonable price, utilizing additional storage to achieve the required

results wouldn’t be a problem. At the user end, the Android device faces an overhead of … memory

for the Cache implementation. Given that only the IoT producer devices have resource constraints,

while the IoT consumer devices have adequate processing and energy capacity these days, we call

a memory overhead of 50KB (for over 100 records) as negligible.

The evaluation comprises of a series of experiments to evaluate the efficiency of ABAC

with the proposed ABCC caching Technique. Obviously, ABAC would give a lower Latency with

a Client Side cache. The question now is if ABCC could give a relatively lower Latency without

making a lot of compromises. To perform the regular ABAC with cache (without ABCC) analysis,

we assume two different kinds of data: critical and non-critical. The critical data always goes to

the Cloud and the non-critical data hits the cache until the given TTL expires, after which it goes

to the Cloud and gets the data to the cache. To perform ABAC with cache (with ABCC) analysis,

we assume more than two different kinds of data. That is, we have varying levels of criticalities

based on which we vary the ABCC from coarse-grains to fine-grains of TTLs. The TTL to perform

the cache invalidation is varied from 0 to infinity across various grains. By doing so, for a given

resource, not all the users come to the Cloud contention at the same time. We assume a total of

3000 employees in the hospital having access to a particular data and we perform experiments to

www.manaraa.com

36

observe the Latency variations for various number of grains for that particular data [see Figure 7].

The minimum number of grains is two and ABAC with cache utilizes this. The results show that

when the number of grains is increased from two, the average Latency for a given user

considerably decreases. Also, this experiment is repeated for various factor sizes to observe the

Latency changes. The following table gives the step by step fragmentation of every grains. Initially

we assume that out of the 3000 hospital staff who have access to a particular data, 2000 subjects

query from the cache since the data is critical to them and 1000 subjects query from the cache.

Then we increase the number of grains at each level, thus creating one additional group at every

level that compromises of the subjects for whom the data is mid-critical and towards which they

have a certain amount of tolerance. Table 7 shows the fragmentation of grains and the number of

subjects belonging to each grain when the grain constant is 0.5. For example, subjects belonging

to the mid-critical region in (N=3) = 0.5 * subjects belonging to high critical region in (N=2).

The experiment follows the above way of fine-graining the criticality levels and is repeated

for various grain constants. We shall observe that for a smaller grain constant (0.25), there is not

a significant change in Latency. This is due to the fact that only a very less number of subjects are

moved from lower TTL grain to the next higher TTL grain, resulting in most of the queries going

to the Cloud server. As the grain constant increases, we shall observe a drastic change in average

Latency, given that the higher grain constants move more number of subjects from the lower TTL

grain to the next higher TTL grain. However, the average Latency tends to saturate after a

particular number of grains. This is due to the fact that after a certain number of grains, there are

not many subjects to move from the current lower TTL grain to the next higher TTL grain, making

the lower Latency contributed by the higher TTL grain negligible to the average Latency.

www.manaraa.com

37

Table 7. An Example used for evaluating fine-grained Attribute Groups based on data criticality

No. of

Grains

To

Server

To Cache

(Criticality level decreases towards the right)

N=2 2000 1000

N=3 1000 1000 1000

N=4 1000 500 500 1000

N=5 1000 500 250 250 1000

N=6 1000 500 250 125 125 1000

N=7 1000 500 250 125 62 62 1000

Figure 7. Evaluation of Average Latency vs Number of Grains in ABCC

Yet another important metric that must be analyzed while experimenting on a cache

consistency Model is staleness. In an IoT Environment, there will not only be INSERTs but there

www.manaraa.com

38

will also be UPDATEs. Thus, we further analyze ABAC with ABCC to determine the various

staleness percentages by performing the following experiments:

i) data staleness for increasing number of grains (constant update rate) [see Figure 8]

ii) data staleness for varying update rates (constant number of grains n) [see Figure 9]

While performing (i), we vary the grain constants to observe the relationship between staleness

and the number of grains for different grain constants. We assume that a data in the Cloud is

updated for every one second and our Android testbed makes 1 query per second. As we can see,

as the number of grains increase, the staleness also increases. Because, more number of grains

means that more the number of subjects using the cache and higher the probability for accessing

the stale data. However, the staleness is comparatively low and almost remains constant for the

grain constant = 0.25. This is because the number of subjects belonging to the high critical region

for grain constant 0.25 are more than the ones belonging to the high critical region for grain

constants 0.5 and 0.75. More the number of subjects in the high critical regions, lower the overall

staleness since the staleness faced by the entire high criticality group is almost zero (given that

these queries always go to the Cloud). Also, for every number of grains we can see that the higher

grain constant gives the highest staleness. This is because, as the grain constant increases the

number of subjects in the newly created grain (having higher TTL) also increases. When there are

more number of subjects using higher TTL for a given data, the probability of these subjects hitting

stale data is also high. The graph for various grain constants begin to saturate at n=7 or higher. The

reason is that the number of subjects that we move to the next newly created grain becomes less at

a certain point after which the staleness contributed by these subjects becomes negligible.

www.manaraa.com

39

Figure 8. Evaluation of Staleness vs Number of Grains in ABCC

While performing (ii), we keep the number of grains as constant (in our experiment, the number

of grains = 5). We study the relationship between the staleness and the update rate with different

grain constants. Undoubtedly, the staleness keeps dropping as the update rate decreases. However,

there is a significant difference in the staleness percentage for various grain constants for a given

update rate. This is again due to the fact that the number of subjects in the high critical region

keeps increasing for increasing grain constants, thus decreasing the overall staleness for the same.

The graph shows a high staleness percentage for the grain constant 0.75. However, it is to be noted

that the high critical data always gives the least staleness percentage for a given update rate [see

Figure 10]. As we can see in the figure, as the criticality decreases the staleness increases since the

subjects utilizing the lower critical data use the cache for a longer time (due to the higher TTLs)

than the subjects utilizing the higher critical data.

www.manaraa.com

40

Figure 9. Evaluation of Staleness vs Update Rate in ABCC

Figure 10. Evaluation of Average Latency vs Number of Grains in ABCC for various Grain

constants

0

5

10

15

20

25

30

35

40

45

50

1 update/0.5 s 1 update/1 s 1 update/2 s 1 update/5 s 1 update/10 s

St
al

en
es

s
(%

)

Update rate

Staleness vs Update rate

Grain constant = 0.25 Grain constant = 0.5 Grain constant = 0.75

0

10

20

30

40

50

60

70

80

90

1 update/0.5 s 1 update/1 s 1 update/2 s 1 update/5 s 1 update/10 s

St
al

en
es

s
(%

)

Update rate

Update rate vs Maximum staleness

High Medium III Medium II Medium I Low

www.manaraa.com

41

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1 Summary

The recent developments in IoT open doors for the realizing various sectors’ dreams like

Smart Health, Smart Cities, Smart Homes, etc., However, the security issues in IoT also keeps

growing with the developments made in IoT. Irrespective of whichever sector adopts IoT, data

security is very important given the huge amount of distinct and sensitive data being stored in the

Cloud. The question that is aimed to be answered in the thesis work is “how to provide a fine-

grained access control to the huge volume of data stored in the IoT Cloud?”. To answer this

question, we first conducted an extensive literature survey on the state-of the-art Access Control

protocols and Techniques. Once the limitations in adopting certain protocols/Techniques are

identified, we proposed: an Attribute Based Access Control for IoT RDBMS Cloud for providing

a fine-grained access control and an Attribute Based Cache Coherency for a minimal average

Latency.

This thesis work discusses IoT and its overall architecture by presenting various IoT

components mainly from the perspective of data security. In Chapter 3, two contributions are

made:

• An Attribute Based Access Control (ABAC) Model for IoT data on Cloud Relational

Databases. It includes an appropriate architecture and an approach for query rewriting with

encrypted query processing to enforce ABAC. It also deals with the hierarchical

relationship between various attribute groups and incorporates Nested Set Model to deal

with various possible hierarchical structures

www.manaraa.com

42

• A novel Attribute Based Cache Coherency (ABCC) approach that utilizes a Client Side

caching Technique and exploits the ‘different data – different users – different criticality’

nature of the IoT data. Under this approach, we also try to make fine-grained criticality

levels of data based on users’ attributes and tailor the TTL based cache invalidation scheme

to provide better Latency performance. We introduce the term grain constant and vary it

under different Environments to analyze its impact on Latency performance

The proposed Techniques are implemented using the experimental setup and evaluated

using extensive experiments. A comparison is made between the ABAC with ABCC and without

ABCC in terms of average Latency and staleness. We can infer from the experiments that,

• ABAC with ABCC gives better average Latency as the number of grains increases.

However, practically after a certain number of grains, the average Latency starts to saturate

given that the number of subjects in the newly created grains is very less. Thus, if an

organization has a lot of diverse IoT data, where a given data is highly critical only to a

certain number of users we can make the grain constant higher, thus resulting in less

average Latency.

• In case of staleness in case of ABCC, lesser grain constants give less staleness percentage

while the higher grain constants give a higher staleness percentage. However, we can also

see that the staleness percentage also saturates after a certain number of grains.

• The grain contributing to the higher staleness percentage is the low criticality grain. Based

on the following practical assumptions, we can call the higher staleness due to the low

critical grain negligible: i) the people belonging to the low critical grain has good amount

of tolerance to the data and ii) the people tend to query the low critical data only

occasionally. Even if the given data is highly critical only to a large number of users we

www.manaraa.com

43

can make the grain constant smaller but still achieve a comparatively lesser Latency against

ABAC without ABCC.

5.2 Future Work

 This works considers the IoT RDBMS data on the Cloud and addresses the access control

and Latency problems prevalent in IoT. The potential future works could be:

• Scaling the proposed idea to a large number of organizations. This work considers the fact

that the IoT data on the Cloud is shared by multiple parties inside an Organization. IoT

data, nowadays is shared among various organizations to achieve interoperability and also

get a lot of meaningful insights.

• Implementing the ABAC with ABCC Technique for non-relational databases. IoT data are

now increasingly stored in NoSQL given its scalability and flexibility. So an appropriate

mechanism to achieve Access Control and better Latency in a NoSQL Environment could

be a valuable extension of the current work.

• Enforcing ‘Write’ or ‘*’ property, since the current work focuses only on the ‘Read’

property. In this way, we can restrict only the authorized users to modify/update the

existing dataset, thus preserving data integrity.

www.manaraa.com

44

REFERENCES

1. Schoenberger CR, Upbin B. The internet of things. Forbes Magazine. 2002 Mar

18;169(6):155-60.

2. Shah SH, Yaqoob I. A survey: Internet of Things (IOT) technologies, applications and

challenges. In Smart Energy Grid Engineering (SEGE), 2016 IEEE 2016 Aug 21 (pp. 381-

385). IEEE.

3. Ronen E, O’Flynn C, Shamir A, Weingarten AO. IoT goes nuclear: Creating a ZigBee

chain reaction. Weizmann Institute of Science, Tech. Rep. 2016 Nov.

4. Nawir M, Amir A, Yaakob N, Lynn OB. Internet of Things (IoT): Taxonomy of security

attacks. In Electronic Design (ICED), 2016 3rd International Conference on 2016 Aug 11

(pp. 321-326). IEEE.

5. Kaye K. FTC: fitness Apps can help you shred calories–and privacy. Online: http://adage.

com/article/privacy-and-regulation/ftc-signals-focus-health-fitness-data-privacy/293080.

2014.

6. Miorandi D, Sicari S, De Pellegrini F, Chlamtac I. Internet of things: Vision, applications

and research challenges. Ad Hoc Networks. 2012 Sep 30;10(7):1497-516.

7. Alasmari S, Anwar M. Security & Privacy Challenges in IoT-Based Health Cloud. In

Computational Science and Computational Intelligence (CSCI), 2016 International

Conference on 2016 Dec 15 (pp. 198-201). IEEE.

8. HIPAA Guide to Privacy and Security of Electronic Health Information

https://www.healthit.gov/sites/default/files/pdf/privacy/privacy-and-security-guide.pdf

9. Goyal TK, Sahula V. Lightweight security algorithm for low power IoT devices. In

Advances in Computing, Communications and Informatics (ICACCI), 2016 International

Conference on 2016 Sep 21 (pp. 1725-1729). IEEE.

10. Kuusijärvi J, Savola R, Savolainen P, Evesti A. Mitigating IoT security threats with a

trusted Network element. In Internet Technology and Secured Transactions (ICITST),

2016 11th International Conference for 2016 Dec 5 (pp. 260-265). IEEE.

11. Sivaraman V, Gharakheili HH, Vishwanath A, Boreli R, Mehani O. Network-level security

and privacy control for smart-home IoT devices. In Wireless and Mobile Computing,

www.manaraa.com

45

Networking and Communications (WiMob), 2015 IEEE 11th International Conference on

2015 Oct 19 (pp. 163-167). IEEE.

12. Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A, Robshaw MJ, Seurin Y,

Vikkelsoe C. PRESENT: An ultra-lightweight block cipher. In International Workshop on

Cryptographic Hardware and Embedded Systems 2007 Sep 10 (pp. 450-466). Springer

Berlin Heidelberg.

13. Google Cloud Database. Security and Integration with Google Cloud. [Online]

November, 2015: https://cloud.google.com/sql/ (accessed November 20, 2015).

14. Guan Z, Li J, Wu L, Zhang Y, Wu J, Du X. Achieving Efficient and Secure Data

Acquisition for Cloud-supported Internet of Things in Smart Grid. IEEE Internet of

Things Journal. 2017 Apr 3.

15. Alasmari S, Anwar M. Security & Privacy Challenges in IoT-Based Health Cloud. In

Computational Science and Computational Intelligence (CSCI), 2016 International

Conference on 2016 Dec 15 (pp. 198-201). IEEE.

16. Horton M, Chen L, Samanta B. Enhancing the security of IoT enabled robotics:

Protecting TurtleBot file system and communication. In Computing, Networking and

Communications (ICNC), 2017 International Conference on 2017 Jan 26 (pp. 662-666).

IEEE.

17. Rushby J. The bell and la padula security Model. Computer Science Laboratory, SRI

International, Menlo Park, CA. 1986.

18. Miller MS, Yee KP, Shapiro J. Capability myths demolished. Technical Report

SRL2003-02, Johns Hopkins University Systems Research Laboratory, 2003.

http://www. erights. org/elib/capability/duals; 2003 Mar.

19. Sandhu RS. Role-based access control. Advances in computers. 1998 Dec 31; 46:237-86.

20. Zhou L, Varadharajan V, Hitchens M. Integrating trust with cryptographic role-based

access control for secure cloud data storage. In Trust, Security and Privacy in Computing

and Communications (TrustCom), 2013 12th IEEE International Conference on 2013 Jul

16 (pp. 560-569). IEEE.

21. Zhou L, Varadharajan V, Hitchens M. Achieving secure role-based access control on

encrypted data in cloud storage. IEEE transactions on information forensics and security.

2013 Dec;8(12):1947-60.

www.manaraa.com

46

22. Elliott A, Knight S. Role Explosion: Acknowledging the Problem. In Software

Engineering Research and Practice 2010 Jul (pp. 349-355).

23. Goyal V, Pandey O, Sahai A, Waters B. Attribute-based encryption for fine-grained

access control of encrypted data. In Proceedings of the 13th ACM conference on

Computer and communications security 2006 Oct 30 (pp. 89-98). Acm.

24. Zhu Y, Huang D, Hu CJ, Wang X. From RBAC to ABAC: constructing flexible data

access control for cloud storage services. IEEE Transactions on Services Computing.

2015 Jul 1;8(4):601-16.

25. Riad K, Yan Z, Hu H, Ahn GJ. AR-ABAC: A New Attribute Based Access Control

Model Supporting Attribute-Rules for Cloud Computing. In Collaboration and Internet

Computing (CIC), 2015 IEEE Conference on 2015 Oct 27 (pp. 28-35). IEEE.

26. Balamurugan B, Shivitha NG, Monisha V, Saranya V. A Honey Bee behaviour inspired

novel Attribute-based access control using enhanced Bell-Lapadula Model in cloud

computing. In Innovation Information in Computing Technologies (ICIICT), 2015

International Conference on 2015 Feb 19 (pp. 1-6). IEEE.

27. Liu Z, Jiang ZL, Wang X, Yiu SM, Zhang C, Zhao X. Dynamic Attribute-Based Access

Control in Cloud Storage Systems. In Trustcom/BigDataSE/I SPA, 2016 IEEE 2016 Aug

23 (pp. 129-137). IEEE.

28. Lv Z, Chi J, Zhang M, Feng D. Efficiently attribute-based access control for mobile cloud

storage system. In Trust, Security and Privacy in Computing and Communications

(TrustCom), 2014 IEEE 13th International Conference on 2014 Sep 24 (pp. 292-299).

IEEE.

29. Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption. In

Security and Privacy, 2007. SP'07. IEEE Symposium on 2007 May 20 (pp. 321-334).

IEEE.

30. Attrapadung N, Libert B, De Panafieu E. Expressive key-policy attribute-based

encryption with constant-size ciphertexts. In International Workshop on Public Key

Cryptography 2011 Mar 6 (pp. 90-108). Springer Berlin Heidelberg.

31. Wang G, Liu Q, Wu J. Hierarchical attribute-based encryption for fine-grained access

control in cloud storage services. In Proceedings of the 17th ACM conference on

Computer and communications security 2010 Oct 4 (pp. 735-737). ACM.

www.manaraa.com

47

32. Hur J, Noh DK. Attribute-based access control with efficient revocation in data

outsourcing systems. IEEE Transactions on Parallel and Distributed Systems. 2011

Jul;22(7):1214-21.

33. Yang K, Jia X, Ren K. Attribute-based fine-grained access control with efficient

revocation in cloud storage systems. In Proceedings of the 8th ACM SIGSAC

symposium on Information, computer and communications security 2013 May 8 (pp.

523-528). ACM.

34. Yao X, Chen Z, Tian Y. A lightweight attribute-based encryption scheme for the Internet

of Things. Future Generation Computer Systems. 2015 Aug 31; 49:104-12.

35. Jo M, Odelu V, Das AK, Khan MK, Choo KK. Expressive CP-ABE Scheme for Mobile

Devices in IoT satisfying Constant-size Keys and Ciphertexts. IEEE Access. 2017 Feb

16.

36. Guo F, Mu Y, Susilo W, Wong DS, Varadharajan V. CP-ABE with constant-size keys for

lightweight devices. IEEE transactions on information forensics and security. 2014

May;9(5):763-71.

37. Sarfraz MI, Nabeel M, Cao J, Bertino E. DBMask: fine-grained access control on

encrypted relational databases. In Proceedings of the 5th ACM Conference on Data and

Application Security and Privacy 2015 Mar 2 (pp. 1-11). ACM.

38. Popa RA, Redfield C, Zeldovich N, Balakrishnan H. CryptDB: protecting confidentiality

with encrypted query processing. InProceedings of the Twenty-Third ACM Symposium

on Operating Systems Principles 2011 Oct 23 (pp. 85-100). ACM.

39. Popa RA, Redfield C, Zeldovich N, Balakrishnan H. CryptDB: processing queries on an

encrypted database. Communications of the ACM. 2012 Sep 1;55(9):103-11.

40. Shafagh H, Hithnawi A, Dröscher A, Duquennoy S, Hu W. Talos: Encrypted query

processing for the internet of things. In Proceedings of the 13th ACM Conference on

Embedded Networked Sensor Systems 2015 Nov 1 (pp. 197-210). ACM.

41. Zhang Y, Li D, Zhu Z. A server side caching system for efficient web map services. In

Embedded Software and Systems Symposia, 2008. ICESS Symposia'08. International

Conference on 2008 Jul 29 (pp. 32-37). IEEE.

www.manaraa.com

48

42. Zeng Z, Veeravalli B. Hk/T: A novel server-side web caching strategy for multimedia

applications. In Communications, 2008. ICC'08. IEEE International Conference on 2008

May 19 (pp. 1782-1786). IEEE.

43. Keller AM, Basu J. A predicate-based caching scheme for client-server database

architectures. The VLDB Journal—The International Journal on Very Large Data Bases.

1996 Jan 1;5(1):035-47.

44. Al Ridhawi I, Mostafa N, Masri W. Client-Side Partial File Caching for Cloud-Based

Systems. In Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,

Scalable Computing and Communications, Cloud and Big Data Computing, Internet of

People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld),

2016 Intl IEEE Conferences 2016 Jul 18 (pp. 909-914). IEEE.

45. Liu X, Ma Y, Liu Y, Xie T, Huang G. Demystifying the imperfect client-side cache

performance of mobile web browsing. IEEE Transactions on Mobile Computing. 2016

Sep 1;15(9):2206-20.

46. Froese KW, Bunt RB. The effect of client caching on file server workloads. In System

Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International Conference on,

1996 Jan 3 (Vol. 1, pp. 150-159). IEEE.

47. Wu CC, Fang JF, Hung PC. A counter-based cache invalidation scheme for mobile

Environments with stateless servers. In Communications, Computers and signal

Processing, 2003. PACRIM. 2003 IEEE Pacific Rim Conference on 2003 Aug 28 (Vol. 2,

pp. 623-626). IEEE.

48. Chand N, Joshi R, Misra M. Efficient cache invalidation in mobile Environment. In India

Annual Conference, 2004. Proceedings of the IEEE INDICON 2004. First 2004 Dec 20

(pp. 107-112). IEEE.

49. Chand N, Joshi RC, Misra M. Energy efficient cache invalidation in wireless mobile

Environment. In Personal Wireless Communications, 2005. ICPWC 2005. 2005 IEEE

International Conference on 2005 Jan 23 (pp. 244-248). IEEE.

50. Ahmad NM, Geok TK. Enhanced client polling with multilevel pre-fetching algorithm

for wireless networks. Journal of Communications and Networks. 2007 Mar;9(1):43-9.

51. Alici S, Altingovde IS, Ozcan R, Cambazoglu BB, Ulusoy Ö. Timestamp-based result

cache invalidation for web search engines. In Proceedings of the 34th international ACM

www.manaraa.com

49

SIGIR conference on Research and development in Information Retrieval 2011 Jul 24

(pp. 973-982). ACM.

52. Blanco R, Bortnikov E, Junqueira F, Lempel R, Telloli L, Zaragoza H. Caching search

engine results over incremental indices. In Proceedings of the 33rd international ACM

SIGIR conference on Research and development in information retrieval 2010 Jul 19 (pp.

82-89). ACM.

53. Fawaz K, Artail H. DCIM: Distributed cache invalidation method for maintaining cache

consistency in wireless mobile networks. IEEE Transactions on Mobile Computing. 2013

Apr;12(4):680-93.

54. Shukla SS, Ingle YS. Cache maintenance using distributed cache invalidation method and

time to live mechanism in wireless mobile network. In Engineering and Technology

(ICETECH), 2015 IEEE International Conference on 2015 Mar 20 (pp. 1-4). IEEE.

55. Alici S, Altingovde IS, Ozcan R, Cambazoglu BB, Ulusoy Ö. Adaptive time-to-live

strategies for query result caching in web search engines. In European Conference on

Information Retrieval 2012 Apr 1 (pp. 401-412). Springer Berlin Heidelberg.

56. Chatterjee D, Tari Z, Zomaya A. A task-based adaptive TTL approach for web server

load balancing. In Computers and Communications, 2005. ISCC 2005. Proceedings. 10th

IEEE Symposium on 2005 Jun 27 (pp. 877-884). IEEE.

	2017
	Fine-Grained Access Control with Attribute Based Cache Coherency for IoT with application to Healthcare
	Piranava Tamilselvan
	Recommended Citation

	tmp.1510777811.pdf.h5DJ_

