
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2017

Fine-Grained Access Control with Attribute Based
Cache Coherency for IoT with application to
Healthcare
Piranava Tamilselvan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Tamilselvan, Piranava, "Fine-Grained Access Control with Attribute Based Cache Coherency for IoT with application to Healthcare"
(2017). Graduate Theses and Dissertations. 15627.
https://lib.dr.iastate.edu/etd/15627

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/15627?utm_source=lib.dr.iastate.edu%2Fetd%2F15627&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

  

 

Fine-grained access control with attribute based cache coherency for IoT with 

application to healthcare 

 

by 

 

Piranava Tamilselvan  

 

 

 

A thesis submitted to the graduate faculty 

 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

 

Major: Computer Engineering 

 

Program of Study Committee: 

Manimaran Govindarasu, Major Professor  

Doug Jacobson 

 Swamy Ponpandi 

 

 

 

 

 

 

Iowa State University 

 

Ames, Iowa 

 

2017 

 

 

Copyright © Piranava Tamilselvan, 2017. All rights reserved.



www.manaraa.com

ii 

 

DEDICATION 

 

Dedicated to my parents – Mr. S. Tamilselvan and Mrs. V. Kokila for all their love and 

support and for giving me the best always, my sister Chinmaya Tamilselvan for her unending 

support and love. 

Dedicated to my friends and relatives, who have supported me throughout the process. I 

will always appreciate all they have done and I wouldn’t have gotten through this process if not 

for them. 

Also dedicated to the memories of my Grandfather Mr. Sivasambu, who always motivated 

me to achieve great heights. 



www.manaraa.com

iii 

 

TABLE OF CONTENTS 

              Page 

LIST OF FIGURES ................................................................................................... iv 

LIST OF TABLES ..................................................................................................... v 

ACKNOWLEDGMENTS ......................................................................................... vi 

ABSTRACT………………………………. .............................................................. vii 

CHAPTER 1  INTRODUCTION .......................................................................... 1 

 1.1 The Internet of Things ................................................................................... 1 

  1.1.1 An Overview ......................................................................................... 1 

  1.1.2 Need for Access Control in IoT Applications....................................... 3 

  1.1.3 Internet of Things in Healthcare ........................................................... 4 

 1.2 Thesis Motivation .......................................................................................... 7 

  1.2.1 Access Control in IoT Environment ..................................................... 7 

  1.2.2 Mitigating Query Latency ..................................................................... 8 

 1.3 Thesis Organization ....................................................................................... 9 

CHAPTER 2  LITERATURE REVIEW ............................................................... 10 

 2.1 End to End IoT Security ................................................................................ 10 

 2.2 Access Control Models in Information Security ........................................... 11 

 2.3 Attribute Based Access Control in a Cloud Environment ............................. 14 

 2.4 Caching Techniques ....................................................................................... 16 

  2.4.1 Client Side Caching .............................................................................. 16 

  2.4.2 Cache Consistency ................................................................................ 17 

CHAPTER 3 PROPOSED WORK ....................................................................... 19 

 3.1 Background .................................................................................................... 19 

 3.2 System Architecture ....................................................................................... 20 

 3.3 Fine Grained Access Control of Encrypted Data ........................................... 22 

 3.4 Client Side Caching and Attribute Based Cache Coherency  ........................ 28 

 

CHAPTER 4  PERFORMANCE EVALUATION ................................................ 32 

 4.1 Experimental Setup ........................................................................................ 32 

 4.2 Performance Evaluation ................................................................................. 34 

 

CHAPTER 5  CONCLUSIONS AND FUTURE WORK ..................................... 41 

 Summary .............................................................................................................. 41 

 Future Work ......................................................................................................... 42 

REFERENCES .......................................................................................................... 44 



www.manaraa.com

iv 

 

LIST OF FIGURES 

 

                                                                                                                                       Page 

 

Figure 1 The Elements of IoT ............................................................................. 2 

 

Figure 2  An Example of an Electronic Health Record ........................................ 5 

 

Figure 3 The Proposed Architecture for achieving 

   Fine Grained Access Control on IoT Cloud ......................................... 21 

 

Figure 4 Group Hierarchy – Case (i) a hierarchical tree,  

   Case (ii) a hierarchical graph ................................................................ 23 

 

Figure 5 Nested Set Model for Case (i),  

   Hierarchical Graph to Hierarchical tree conversion for Case (ii),  

   Nested Set Model for Case (ii) .............................................................. 26 

 

Figure 6  Experimental evaluation ....................................................................... 34 

 

Figure 7 Evaluation of Average Latency vs Number of Grains 

   with and without ABCC........................................................................ 37 

 

Figure 8 Evaluation of Staleness vs Number of Grains 

   with and without ABCC........................................................................ 39 

 

Figure 9 Evaluation of Staleness vs Update Rate in ABCC................................ 40 

 

Figure 10 Evaluation of Average Latency vs Number of Grains in ABCC .......... 40 

 



www.manaraa.com

v 

 

LIST OF TABLES 

                                                                                                                                  Page 

Table 1 Assignment Table ...................................................................................... 23 

Table 2 Patient Table before modification .............................................................. 25 

Table 3 Patient Table after modification ................................................................. 25 

Table 4 Nested Set Table for Case (i) ..................................................................... 27 

Table 5 Nested Set Table for Case (ii) .................................................................... 27 

Table 6 Coarse-grains of Attribute Groups to Fine-grains  

  based on data criticality levels ................................................................... 32 

Table 7 An Example used for evaluating fine-grained 

  Attribute Groups based on data criticality ................................................. 37 



www.manaraa.com

vi 

 

ACKNOWLEDGMENTS 

 

I would first like to thank my Major Professor, Dr. Manimaran Govindarasu for his 

guidance, encouragement, and patience over the last two years. Thank you so much for pushing 

me hard to look at research in different ways and for being my constant source of knowledge and 

inspiration. You consistently steered me in the right direction whenever you thought I needed it. 

I would also like to thank Dr. Doug Jacobson and Dr. Swamy Ponpandi for agreeing to be 

on my Committee and taking out time to respond to my e-mails.  

In addition, I would like to thank my research group for providing me valuable feedback 

during all my research presentations and my friends who provided moral support and helped me 

in understanding certain technicalities that I was not aware of previously. 

 



www.manaraa.com

vii 

 

ABSTRACT 

 

The Internet of Things (IoT) is getting popular everyday around the world. Given the 

endless opportunities it promises to provide, IoT is adopted by various organizations belonging to 

diverse domains. However, IoT’s “access by anybody from anywhere” concept makes it prone to 

numerous security challenges. Although data security is studied at various levels of IoT 

architecture, breach of data security due to internal parties has not received as much attention as 

that caused by external parties. When an organization with people spread across multiple levels of 

hierarchies with multiple roles adopts IoT, it is not fair to provide uniform access of the data to 

everyone. Past research has extensively investigated various Access Control Techniques like Role 

Based Access Control (RBAC), Identity Based Access Control (IBAC), Attribute Based Access 

Control (ABAC) and other variations to address the above issue. While ABAC meets the needs of 

the growing amount of subjects and objects in an IoT Environment, when implemented as an 

encryption algorithm (ABE) it does not cater to the IoT RDBMS applications. Also, given the 

query processing over huge encrypted dataset on the Cloud and the distance between the Cloud 

and the end-user, Latency issues are highly prevalent in IoT applications. Various Client Side 

caching and Server Side caching Techniques have been proposed to meet the Latency issues in a 

Client-Server Environment. Client Side caching is more appropriate for an IoT Environment given 

the dynamic connections and the large volume of requests to the Cloud per unit time. However, an 

IoT Cloud has mixed critical data to every user and conventional Client Side caching Techniques 

do not exploit this property of IoT data. 

In this work, we develop (i) an Attribute Based Access Control (ABAC) mechanism for 

the IoT data on the Cloud in order to provide a fine-grained access control in an organization and 
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(ii) an Attribute Based Cache Consistency (ABCC) Technique that tailors Cache Invalidation 

according to the users’ attributes to cater to the Latency as well as criticality needs of different 

users. We implement and study these Models on a Healthcare application comprising of a million 

Electronic Health Record (EHR) Cloud and a variety of end-users within a hospital trying to access 

various fields of the EHR from their Smart devices (such as Android phones). ABAC is evaluated 

with and without ABCC and we shall observe that ABAC with ABCC provides a lower average 

Latency but a higher staleness percentage than the one without ABCC. However, the staleness 

percentage is negligible since we can see that much of the data that contributes to the staleness 

percentage are the non-critical data, thus making ABAC with ABCC an efficient approach for IoT 

based Cloud applications. 
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CHAPTER 1. INTRODUCTION 

1.1 The Internet of Things 

1.1.1 An Overview 

The Internet of Things (IoT) [1] refers to the use of intelligently connected devices and 

systems to leverage data gathered by embedded sensors and actuators in machines and other 

physical objects. Advances in technologies especially Wireless and Mobile connectivity, Radio-

Frequency Identification (RFID), smart sensors, etc., when combined, could help realize a 

miniaturized, embedded, automated Internet of connected devices communicating regularly and 

relatively effortlessly. IoT promises to change our way of doing things through better information 

in real-time and improves learning opportunities. IoT can improve efficiency (achieving similar 

levels of impact with fewer resources) and/or enhance effectiveness (increasing impact with 

similar levels of existing resources). In short, IoT is an ecosystem of inevitably related processes 

and other technologies from the perspective of a goal within a specific use case. 

 In many respects, it can initially look the same as M2M (Machine to Machine) 

communication – connecting sensors and other devices to Information and Communication 

Technology (ICT) systems via wired or wireless networks. In contrast to M2M, however, IoT also 

refers to the connection of such systems and sensors to the broader Internet, as well as the use of 

general Internet technologies [2]. M2M is almost synonymous with isolated systems of sensors 

and islands but IoT is the ecosystem that connects these disparate vertical pillars. 
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Figure 1. The Elements of IoT 

The main components of the IoT are: 

- The thing itself 

- The Local Network, which moves data in and out of the device 

- The Internet, from where it goes to the Cloud considering the massive amount of data 

collected from various devices spread across various regions. The data stored goes to the 

end-user devices at appropriate times 

- End-user devices (desktop, laptop, smartphones) or enterprise data systems that receive 

and manipulate data 

Looking towards the applications and services in the IoT, we see that the application 

opportunities are open-ended, and only imagination will set the limit of what is achievable. There 

are many specialized use cases of IoT. Some of the most prominent application areas are: building 

and home automation, medical and healthcare, transportation, manufacturing, Environmental 

monitoring, etc., 
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1.1.2 Need for Access Control in IoT Applications 

The greater the connected devices, the more the possibilities for cyber-attacks [4]. One of 

the most prevalent concerns of implementing the IoT for any application would be the security 

risks revolving around the various entities – the edge device, the network through which the transit 

of data occurs and the cloud.  Breaching of confidential data through any of these entities is 

dangerous. In a recent proof-of-concept exploit, for example, researchers demonstrated that a 

network could be compromised through a Wi-Fi-enabled light bulb [3].  

Several measures are already being taken to close the holes and prevent security breaches 

at the device level, and efforts are being led to tackle major disasters before they happen. A lot of 

encryption and other cryptography Techniques play a crucial role in safe data generation and 

transit. However, to ensure an end to end security, the Cloud has to be trusted [5]. The IoT and the 

Cloud are dependent on each other. While IoT exploits the unlimited capabilities of the Cloud in 

terms of storage and processing, Cloud would not be interesting if it’s not for the IoT data! 

Nowadays, with a lot of trusted Cloud Service providers and with no security keys being stored on 

the Cloud, we can be sure that the encrypted data stored in the Cloud would not be exposed to any 

hackers trying to get illegal access to the data. However, ensuring confidentiality and integrity is 

much more than mere encryption preventing only the hackers from accessing the data. To ensure 

the CIA (Confidentiality-Integrity-Availability), access must be restricted to those authorized to 

view the data in question. That is, no matter if it’s the people inside/outside the organization, a 

resource could only be made available to a subject who is entitled to accessing it. This is to make 

sure that users at various hierarchies in an organization get access to only the appropriate data. 

This appropriateness would be determined by the IoT application given its nature of data and the 

various types/levels of users accessing the data. 
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Some of the popular IoT applications include Smart Home, Smart Healthcare, Smart Cities, 

etc.,[6] In this work, we apply the proposed Models on a Healthcare IoT application due to the 

high sensitivity and criticality of the data. In the context of an IoT Healthcare application, a patient 

deserves the right to care about the privacy of his/her data. Various vital signs of patients like 

Blood Pressure, heart rate, etc., would be generated and transmitted to the cloud repository. These 

data along with other sensitive data in Electronic Health Records (EHR) like Social Security 

Number (SSN), billing information, etc., have to be kept secret [7] due to obvious security reasons. 

Many conventional end-to-end security mechanisms involving encryption would prevent 

intruders/eavesdroppers from accessing these critical data. However, the data has to remain secure 

internally within the organization as well. That is, which users with what privileges can have access 

to which kind of data must be enforced. 

1.1.3 Internet of Things in Healthcare 

With the advent of IoT, Smart Healthcare is now possible. Smart Healthcare devices are 

wirelessly enabled and can be used to monitor and collect data from patients suffering from various 

disorders. They put the critical data, such as CT scans, test results and other records, into the hands 

of patients as well as medical teams at any-time and on any smartphones or computers. The smart 

devices can gather data on their own and remove the limitations of human-entered data. The 

doctors can obtain the data that they need whenever they want, thus enabling them to have better 

interaction with patients remotely. This process reduces the risk of error, which means increased 

efficiency, reduces cost of care and increases quality of care in healthcare.  

Off-line monitoring of patients has also become possible because of IoT. Healthcare 

monitoring and wearable devices are capable of transmitting data from a patient’s home to the 
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hospital. This type of automated process replaces the doctor/patient visiting by regular intervals to 

check the health of the patients.  

An Electronic Health Record (EHR) is an electronic version of a patient’s medical history, 

that is maintained by the provider over time, and may include all of the key administrative clinical 

data relevant to that persons care under a particular provider, including demographics, progress 

notes, problems, medications, vital signs, past medical history, immunizations, laboratory data and 

radiology reports. Given the digital nature of an EHR, information is available whenever and 

wherever needed. Healthcare professionals claim that with the data, timeliness and availability of 

EHRs, better decisions and more coordinated care are made possible. 

 

Figure 2. An example of an Electronic Health Record (Note: The individual is fictional) 

Internet of Things is helping hospitals avoid, mitigate, or predict adverse events by 

focusing on integrating medical devices into a smart network of monitoring tools linked to the 



www.manaraa.com

6 

 

EHR. A lot of providers are working on integrating and streamlining all of the patient-generated 

health data in their EHRs. The real time data from sensors, tablets, smartphones, and peripherals 

will soon be captured in EHR. 

The HIPAA Security Rule establishes national standards to protect individuals’ electronic 

personal health information that is created, received, used, or maintained by a covered entity (a 

healthcare provider in our context). The Security Rule requires appropriate administrative, 

physical and technical safeguards to ensure the confidentiality, integrity, and security of electronic 

protected health information. [8] 

 In an IoT connected Healthcare system, the CIA terms could be appropriately defined as 

the following: 

- Confidentiality: the EHRs of patients are given access only to the professionals who have 

the adequate access privileges 

- Integrity: the EHRs of the patients can be altered only by the professionals who have the 

adequate access privileges 

- Availability: the EHRs of the patients and the other services revolving it should be 

available to the appropriate professionals without any conflict whenever needed 

The HIPAA requirements ask the patients (IoT data owner) to check if the following security 

features are addressed for his/her practice.  

- ePHI encryption  

- Auditing functions  

- Backup and recovery routines  

- Unique user IDs and strong passwords  
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- Role- or user-based access controls  

- Auto time-out  

- Emergency access  

- Amendments and accounting of disclosures 

1.2 Thesis Motivation 

1.2.1 Access Control in an IoT Environment 

There are a variety of Techniques for providing security to the data that are transmitted and 

stored in the cloud [9]. However, most of these Techniques’ main vision is to keep the data safe 

and secure from the third parties. This is inconsistent with the data sharing requirements of most 

real-world applications. The solutions to manage and provide internal security to the massive 

volume of data produced and stored by the IoT objects are yet to mature. 

There are few Access Control methods that might suit various IoT applications. The 

literature survey shows that there is some good amount of cryptographic Techniques that would 

help to achieve the given fine grained access control by allowing the data to be decrypted only by 

the people with appropriate privileges. However, it is also evident that such cryptographic 

Techniques are implemented assuming an unlimited amount of computation and energy, which 

unfortunately cannot be provided by the IoT devices.  

There are few light-weight access control encryption protocols [9,12] that can account for 

the resource constraints of a typical IoT device and can give the device the ability to encrypt based 

on appropriate access control policies and store in the cloud. The decryption can be done at a 

trusted proxy or at the client. However, these protocols are more suited to file-systems on the cloud 

rather than conventional DBMS which sound to be a more sensible storage option when it comes 



www.manaraa.com

8 

 

to storing EHRs on the Cloud. This thesis work addresses this problem of providing a fine grained 

access control to the EHR data stored on the cloud and at the same time taking into account the 

various resource constraints of an IoT device in healthcare. 

1.2.2 Mitigating Query Latency 

 In an IoT application say Healthcare, which comprises of a variety of entities like doctors, 

nurses, practitioners, medical students, administrators, accountants, etc., every user would be 

interested in a particular type of data. For example, doctors belonging to the oncology department 

would be more interested in the vitals of patients diagnosed with cancer, while the accountants 

would be more interested in the billing information and other monetary details of the patients. That 

is, every type of user, based on his role will have his/her very own interest space. This results in 

the user querying for the same data over and over. We can try to exploit this nature of the user’s 

workload to obtain the results faster.  

Caching is an obvious solution to provide faster retrieval of frequently used data. However, 

when it comes to real-time IoT like a Smart Healthcare Environment, we might have to consider 

various factors into account when it comes to caching: if there is enough storage capacity at the 

Caching Node, how frequently we are allowed to hit the stale data and which kind of data can 

never go stale in the cache. In addition to this, we must also make sure that there is not a lot of 

contacts made between the server and the client in the process of ensuring cache consistency 

because in an IoT Environment where there would be a huge number of clients subscribing to a 

server, letting a lot of connections open is not a wise idea. This problem of providing a caching 

option for a healthcare IoT scenario is also considered and addressed in this thesis work.  
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1.3 Thesis Organization 

The rest of the thesis work is organized as follows: 

- Chapter 2: a literature survey of the existing access control mechanisms and caching 

approaches in a Client-Server Model 

- Chapter 3: proposal of an Attribute Based Access Control mechanism and the method of 

achieving it in a conventional RDBMS. The chapter also deals with the proposal of novel 

Attribute Based Cache Coherency that would provide a faster query retrieval while 

adhering to the criticality requirements of the data 

- Chapter 4: experimental evaluation 

- Chapter 5: conclusion and future work 
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CHAPTER 2. LITERATURE REVIEW 

 As discussed in Chapter 1, there is a lot of work done on the various security mechanisms 

that could guarantee an end-end security in an IoT Environment.  

2.1 End-to-End IoT security 

 When a data is said to be End-to-End secure, it means that the data is not prone to external 

attack right from the time of data generation until the time of data consumption. In terms of IoT, 

the data has to be secure when it is generated at the sensor and it has to maintain the same level of 

security until it reaches the end-user. We can divide the end to end security into two phases: i) 

Phase I – security while data generation and transmission to the Cloud and ii) Phase II – data 

security while residing in the Cloud. 

 Traditionally, we use AES for most of the security demanding applications. However, the 

cost demanded by these traditional security algorithms are pretty high for an IoT device. An IoT 

device which is considered to be constrained in terms of energy and computation needs algorithms 

that would suit their specifications. A lot of work has been done on the chip level security of the 

IoT devices. In the literature, a lot of light weight cryptography algorithms like PRESENT [12] 

have been proposed for the IoT producer devices like the sensors. So using these feasible and light 

weight encryption algorithms, the produced data can be encrypted and thus sent to the Cloud in a 

secure way, sparing any sort of attack that might happen during the transit. 

 Cloud security is also widely studied and nowadays, the Cloud Service Providers encrypt 

the data before storing them [13]. Cloud security solutions for a lot of IoT applications like Smart 

Grid [14], eHealth [15], Robotics [16] have been proposed. All these methods proposed in the 

literature, together can help achieve the end-to-end security in an IoT Environment, by keeping 
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the data encrypted until the end-user decrypts it. However, they don’t take into account the various 

loopholes that are inside the organization like inappropriate users accessing critical data, leakage 

of sensitive information from inside parties to the wrong hands, etc. So a proper access control that 

meets the IoT constraints and at the same time restricts inappropriate users from having access to 

certain data has to be implemented.  

2.2 Access Control Models in Information Security 

At the cloud, when the data is encrypted and secure, we can trust that no other third party 

gets access to the data. However, in order to ensure a secure way of data sharing within the 

organization, some kind of access control mechanism has to come into picture. In the field of 

information security, access control means prohibition of irrelevant users from accessing data that 

are beyond their rights and privileges. Some of the established access control schemes are: 

Mandatory Access Control (MAC), Discretionary Access Control (DAC), Role Based Access 

Control (RBAC) and Attribute Based Access Control (ABAC). 

 Under MAC, Bell-LaPadula [17] Model deals with the confidentiality of the information 

and Biba Model deals with the integrity of the information. The Models had a similar hierarchical 

approach that would prevent unrestricted users to read/write a restricted file. This is achieved by 

assigning certain labels to the subjects and objects: Top Secret (highest priority), Secret, 

Confidential and Unclassified (least priority), that dictates that a subject assigned with a particular 

label would only be able to access the objects that are below the level of his/her label. This was 

sufficient in a computer system where a course-grained access control was sufficient. But in the 

context of IoT where there would be plenty of users accessing the data, categorizing them into a 

handful of labels would not serve the purpose of restricting various kinds of users from accessing 
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undesirable data. Thus MAC fails to provide a fine-grained Access Control for the huge amount 

of IoT data. 

 On the other hand, DAC [18] resolves to provide a pretty fine-grained access control by 

using the concept of Access Control Matrix / Access Control Lists. This list has the details 

containing which user is authorized to provide which resource. Although this provides a great 

distinction among users, the granularity is so fine-grained that it cannot be adopted for an IoT 

Environment given the huge volume of data on the Cloud and also the huge volume of users trying 

to access the data. In other words, maintenance of such a large Access Control List would be so 

arduous in an IoT Environment. 

 Role Based Access Control [19] is an alternative approach that gained a great importance 

in cloud security. It is about providing access rights based on the roles possessed by the user in an 

organization. It combines the properties of MAC and DAC and implements a good level of 

granularity among the users. The RBAC has two separate mappings: i) one from the various users 

to various roles and ii) one from various roles to privileges. To elaborate, role is an abstraction to 

create the user behavior and their assigned duties. In this way, access to an object is permitted 

based on the user’s role and not the user himself. That is, RBAC provides a means of naming and 

describing many-to-many relationships between individuals and rights unlike a one-one relations 

in the case of DAC. Also in RBAC, when the roles are removed or revoked, it is not mandatory to 

change the access permissions that are assigned to that roles. This scheme overcomes the 

disadvantages of the previous Models and it is more flexible paving way for many enterprises and 

organizations to formulate their access policies without violating their organization structure and 

policies. This kind of approach makes real-time cloud based data access control more practical. 

Works like [20] and [21] have focused on implementing the RBAC scheme in a Cloud architecture 
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to ensure security and at the same time maintain the properties of an organization’s hierarchy. 

However, researchers soon realized a serious problem with RBAC called ‘Role Explosion’ [22] in 

large enterprises. Role Explosion is due to the necessity of thousands of roles being fashioned for 

different collections of permissions. In addition to the role explosion problems, RBAC also 

suffered from role management problems since it was difficult to retain and reallocate the roles 

and permissions for users after change of their positions and job titles in the organization hierarchy. 

Although the identity management problem is well understood in RBAC, research performed over 

the last several years suggests that the separate problem concerning the proliferation of roles is not 

generally appreciated within the academic and practitioner communities. 

 In order to overcome the drawbacks of RBAC, Attribute Based Access Control (ABAC) 

[23] came into picture. ABAC realizes that one of the main problems with the design of RBAC is 

its two-way mapping: user to role and role to object. ABAC converges this two-way mapping to a 

single-way mapping – users with attributes to objects with Access Control Policies (ACP). In an 

ABAC Model, every user will be given various attributes and every object will be assigned with a 

particular access control policy that might suit its nature. For example, in a healthcare IoT, a user’s 

attributes could be (doctor, oncology, level=3), (nurse, oncology), (medical student), etc., An 

object on the other hand would be the medical data like the EHRs. In this case, the data of a cancer 

diagnosed patient would be assigned with an ACP that would look like (doctor AND oncology), 

resulting in the access of this particular data only by users owning both the ‘doctor’ and ‘oncology’ 

attributes.  ABAC systems can create a variety of definitions and very fine-grained purposeful 

expressions. Some examples would be: 

- An early stage cancer patient’s data could be defined with an ACP (doctor AND oncology) 

OR (nurse AND oncology) 
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- A critical cancer patient’s data could be defined with an ACP (doctor AND oncology AND 

level>3) 

In this way, ABAC makes the system design more flexible and more scalable. ABAC’s working 

is mainly based on analyzing the user’s attributes and thereby restricting the unauthorized users 

from having access to sensitive data. Thus we observe that an ABAC Model would suit the IoT 

applications better than any other access control Models. 

2.3 Attribute Based Access Control in a Cloud Environment 

 A good amount of work exists in the literature that implements an ABAC scheme in a 

Cloud Environment [24-28]. Almost all of the implementations are based on using the Attribute 

Based Encryption [23] Technique since the data on the cloud has to go encrypted. Two variants of 

ABE were also proposed based on various use cases:  

- Cipher text-Policy ABE (CP-ABE) [29]: A secret key is associated with user’s attributes 

and Cipher-text is labeled with an ACP  

- Key-Policy ABE (KP-ABE) [30]: Attributes are used to describe the Cipher-text and 

policies are built into users’ keys. 

CP-ABE is observed to be more suitable in a Cloud Environment. Before uploading data files to 

the cloud server, the data owner can specify an ACP and encrypt data under this policy. Only such 

users whose attributes satisfy the policy can successfully decrypt the encrypted data using their 

secret keys. 

 A variety of works focus on the hierarchy issues [31], attribute revocation and policy 

updating issues [28, 32, 33] in an ABE scheme. But all these works assume the source of 

encryption to be computationally powerful to perform an expensive cryptographic algorithm. 
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However, in most of the IoT applications where the source data are from WSNs and other resource 

constrained devices, a full-fledged ABE would not be feasible. Works like [34-36] focus on 

developing a lightweight ABE approach to suit an IoT Environment by incorporating some pre-

processing and tweaking of the traditional ABE algorithm. Although this kind of encryption 

scheme answers the question of energy efficiency in IoT devices, this might not be suitable for all 

kind of IoT applications. It might be applicable for individual file systems, which can be encrypted 

using the light-weight ABE and be stored on the cloud and at the other end can be decrypted by 

the appropriate users. But for applications demanding a relational database storage on the Cloud 

like the EHRs, this might not be a suitable option. This is because an ABE or any of its variants 

would not accommodate an encrypted query processing on the dataset. So we shall conclude that 

ABE is not the right way to achieve ABAC for IoT systems demanding a relational database 

system. 

 Along those lines, DBMask [37] is the first practical implementation of an ABAC on 

relational databases. DBMask proposes a novel Technique that separates fine grained access 

control from encrypted query processing when evaluating SQL queries on encrypted data and 

enforces fine grained access control at the granularity level of a column, row and cell based on an 

expressive attribute-based group key encryption scheme. DBMask is inspired by the CryptDB 

project [38, 39], which is the first research effort that has systematically investigated access control 

for SQL queries on encrypted relational data. However, DBMask overcomes some of the 

limitations of CryptDB related to encrypted query processing and fine grained access control. In 

DBMask, each cipher-text is only a single layer of encryption as opposed to onions of layers of 

encryption in CryptDB and the cipher-text supports comparison operation. Also unlike CryptDB, 

the data are never decrypted to weaker encryptions inside the cloud server and therefore the 
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security of the data does not weaken over time. However, both DBMask and CryptDB are designed 

with web applications in mind and is not suitable for IoT application scenarios because: they rely 

on a trusted proxy which intercepts the communication and applies encryption/decryption 

transparent to the user. This approach apart from causing security conflicts also adds a computation 

overhead of 25% [40]. 

 Talos [40] is a system that is developed exclusively for IoT applications, that stores the IoT 

data securely in a Cloud database while still allowing query processing over the encrypted data. 

Talos architecture, combined with the fine-grained access control mechanism proposed by 

DBMask would help us in achieving a fine-grained access control for the huge amount of IoT data 

stored in a Relational Database Cloud Systems. 

2.4 Caching Techniques 

2.4.1 Client Side caching 

Caching is one of the best solutions to account for the Latency problems in most of the 

Client-Server applications. In a Client-Server Environment, caching can be done at any end – at 

the Client or at the Server. In conventional relational database systems, caching is done at the 

Server Side [41, 42] in order to reduce disk traffic by storing the frequently used pages in the 

cache. However, in order to hit this cache, a query has to be sent through the network to the server. 

This had been happening under the assumption that the Client Side is not capable enough to hold 

the frequently hit data. But given today’s smart phones (the primary IoT consumer devices), their 

capability is not just limited to sending queries but also storing certain data and querying over the 

stored data is easily possible. A lot of study has been done on the various ways to achieve Client 

Side caching [43-46]. 
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Client Side caching is appropriate to our application, given the diverse needs of various 

users belonging to the organization. Based on the roles and privileges of different users, they might 

have different interest spaces. Server Side caching might not be applicable to this scenario, where 

the data requirements are disjoint and there is no guarantee that the consequent users would need 

the same data. Client Side caching proves to be a better choice for our given IoT application 

because each client can have his/her own interest space based on their attributes. It also reduces 

network traffic by serving the queries locally rather than sending every single query to the server. 

2.4.2 Cache consistency 

 One of the main factors while designing a cache Model is deciding on the cache consistency 

method. Data can be invalidated at appropriate instances to maintain the data consistency in the 

cache. The invalidation Techniques can be divided into two categories: server initiated (push-

based) invalidation and client initiated (pull-based) invalidation. Server initiated invalidation sends 

an Invalidation Report(IR) to the appropriate clients at the appropriate time, thus invalidating 

potential inconsistent data. The methods proposed in literature for server initiated invalidation can 

be broadly classified into two broad categories: stateless [47], where every update has to be 

broadcasted through IRs to all clients periodically and stateful [48, 49], where metadata has to be 

maintained about particular clients and any update has to be multi-casted to appropriate clients 

who are interested in a particular data. The greediness of the stateful approach and the maintaining 

of metadata and the network traffic that could be caused by stateful approach make server initiated 

invalidation unsuitable for our application. Client Side invalidation methods proposed in the 

literature can again be broadly classified into: client polling [50], where a client polls the server at 

regular intervals to check if the cache is up-to-date and TTL based Techniques [51-54], where a 

heuristic Time-To-Live (TTL) are applied for every entity of the resource, which the client caches 
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in addition to the data. The data is deemed to be invalid if the corresponding Time-To-Live in the 

Cache expires. Client Polling, again creates a lot of contact between the client and the server. TTL 

is the most inexpensive method in terms of network traffic compared to all the given methods. 

However, TTL can create ambiguity between the strong and weak consistency Models. 

The lower the TTL, higher the data consistency and vice-versa. In a healthcare application, the 

critical data could be assigned with a lower TTL while the non-critical data could be assigned with 

a higher TTL, so as to reduce the number of total queries to the server. A variety of Techniques 

for TTL assignment including a lot of adaptive TTL schemes have been proposed in the literature 

[55, 56]. But none of the works consider the diverse type of users and the various levels of 

criticality the users hold towards various data. If this is considered and if a caching with an 

appropriate cache consistency is designed, we can further reduce the average Latency. 
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CHAPTER 3. PROPOSED ATTRIBUTE BASED ACCESS CONTROL WITH 

ATTRIBUTE BASED CACHE COHERENCY 

3.1 Background 

In an Internet of Things scenario, there are two types of people: i) data producers and ii) 

data consumers. Data producers could be sensors, aggregators or other others who push data 

periodically/aperiodically to the cloud. Data consumers could be actuators or the end-users who 

need the produced data for observation and to gain other meaningful insights. Since the data 

producer devices mostly comprise of wireless sensor networks and embedded devices, they are 

already widely studied in terms of their resource constraints (computation, communication and 

other security concerns). On the other hand, the end-devices on the consumers’ end are still prone 

to issues like network congestion due to enormous number of users sending uplink/downlink 

requests, power consumption of the client devices, Latency constraints given the time-criticality 

of an application and unauthorized data access. 

From the perspective of a Healthcare IoT, we consider two major issues: i) unauthorized 

access of data by the internal and external stakeholders of EHR. Internal stakeholders of the EHR 

involves the hospital staff and the external stakeholders involves government agencies, insurance 

agencies and other vendors. An important attribute of EHR is that the EHR of a patient can be 

shared between more than one health organization. Considering this vast number of users of the 

EHR data, the Healthcare IoT should be made completely secure by allowing only the authorized 

users to access their corresponding data and ii) the time-criticality of data. A Healthcare IoT is 

considered to be the most time-critical IoT application today. So the end-users will expect the 

required data to be available to them within a reasonable deadline. For instance, a group of 
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specialty doctors observing a critical patient might not have the patience to wait for a long time 

for the queried data.  

To overcome these two issues, this thesis proposes the following approaches: i) a modified 

DBMask architecture by applying Talos to make it suitable to the IoT applications. We utilize the 

attribute based grouping and query rewriting Technique similar to the approach proposed in 

DBMask. We extend this work to account for hierarchical groups and appropriate query rewriting. 

By applying Talos, we eliminate the proxy, thus securing the keys at the client and also by reducing 

a significant amount of computational overhead to fit DBMask into the IoT scenario and ii) a novel 

client-Side caching Technique that takes into account the granularity of criticality of data across a 

wide variety of user groups obtained from (i). The idea here is that for a particular group of users, 

a particular field might be highly critical and consistency of the data cannot be compromised. 

However, there could be another group of users who also have access to the same data but they 

can tolerate staleness to a particular threshold. An example could be, the users belonging to the 

Admin department might have access to few of the vitals like weight of a patient. They would need 

the information just to fill some forms or files that’s not really highly significant. On the other 

hand, there could be a group of medical students who observe the patients as a part of their training. 

They can tolerate some amount of staleness of the weight data as they wouldn’t encounter critical 

patients. However, a group of dieticians have to know the most recent weight data in order to 

observe the sudden drop/gain of weight of a particular patient. That is, the level of criticality 

depends on the attributes of the end-user.  

3.2 System Architecture 

The architecture that is suitable for achieving a fine-grained access control of data with minimum 

Latency across users in IoT applications is given in Figure 3. 
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Figure 3. The Proposed Architecture for achieving Fine Grained Access Control on IoT Cloud 

with Minimal Average Latency 

Here, encrypted EHR along with periodic vital values collected from the IoT devices like 

wearable devices and other fitness trackers like Fitbit are stored in a secure RDBMS in the Cloud. 

This forms the data producer and the storage parts of the architecture. Data consumers for this 

application include mobile and web apps through which the hospital staff view the patient data.  

Here due to the vast amount of work done at the Cloud level and device level security, we assume 

that the data is secure during the commute between the IoT devices and the Cloud and also at the 

Cloud. We propose a query rewriting Technique based on the attributes of the hospital staff to 

achieve the fine grained access control of data. Also, we shall see a local cache at the Client Side, 

which stores the data queried from the Cloud Server. 

3.3 Fine Grained Access Control of Encrypted Data 

There are some key definitions involved in the approach: 

DEFINITION 1 – Attribute 

Attributes are entities such as roles, department, level, etc., that a person holds in an organization 

Example:  
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Attributes of User 1 - doctor, oncology, 3 

Attributes of User 2 - receptionist, admin department 

DEFINITION 2 - Access Control Policy 

Let T be a table. On T, an ACP (c, p) can be defined, where c is a particular cell of T and p is the 

policy pertaining to c. This p is a combination of attributes and Boolean operators. 

Example: 

ACP over a critical cancer patient’s data – (doctor AND oncology AND level > 3) 

ACP over the billing information of a patient – (account) 

DEFINITION 3 - Groups 

A group is a set of users satisfying the same attribute conditions. 

Groups are obtained by converting ACP into Disjunctive Normal Form(DNF). For every distinct 

disjunctive clause, a group is formed. 

Example: 

Let’s assume an ACP (c,p) defined over a cell c : (A1) AND (A2 OR A3), where A1, A2 and A3 

are the attributes 

After converting to the DNF, ACP (c,p) becomes : (A1 AND A2) OR (A1 AND A3). 

Now users satisfying the clause (A1 AND A2) become group G1 and users satisfying the clause 

(A1 AND A3) become group G2. 
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DEFINITION 4 - Group Hierarchy 

Group Hierarchy is a partial ordered tree obtained by linking the relationship between various 

groups created. The root node forms the most privileged group. 

An example of this hierarchy is given in Figure 4. Based on the organization hierarchy, different 

structures of groups hierarchy can be formed as seen in Figure 4 (Case (i) – a hierarchical tree, 

Case (ii) – a hierarchical graph) 

 

Figure 4. Group Hierarchy – Case (i) a hierarchical tree (top), Case (ii) a hierarchical graph 

(bottom) 

PHASE I: System Initialization 

Decision of ACPs: 

The EHR vendor in consultation with the healthcare authority determines the list of ACPs 

and puts them in a table in the RDBMS on the cloud. ACP to Groups conversion also occur at this 

step. The resultant table is the Assignment table, an example of which is show in Table 1. 
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Table 1. Assignment Table 

Table Column Condition ACP Groups 

Patient ID, Name, Diagnosed, 

Severity, <Other vitals> 

Severity = ‘High’ (Oncology AND 

Specialist) 

G4 

Patient ID, Name, Diagnosed, 

Severity, <Other vitals> 

Severity = 

‘Medium’ 

(Oncology AND 

Biopsy AND 

(Doctor OR 

Nurse)) 

G5, G6 

Patient ID, Name, Insurance, 

SSN, Billing_info 

 (Accounts) G3 

 

Appending additional columns to the existing main tables: 

In addition to the required columns, the table structure is modified to add one comparison 

friendly column to every existing column (see Table 2 vs Table 3). These columns are known as 

the corresponding label columns of the respective columns. The cells of these columns contain the 

name of the group, who has access to the corresponding data column. This information is obtained 

from the Assignment table. Please note the insurance and billing_info columns are not illustrated 

in the example tables given the space restrictions. 

Table 2. Patient Table before modification 

ID Name Diagnosed Severity <Vitals> SSN 

1 Alice Cancer High … xxx-xx-xxxx 

2 Bob Cancer Medium … xxx-xx-xxxx 

3 Carol Cancer High … xxx-xx-xxxx 
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Table 3. Patient Table after modification 

ID ID_labe

l 

Name Name

_label 

Diagnosed Diagnosed

_label 

Severity Severity

_label 

<Vitals

> 

<Vitals

>_label 

SSN SSN

_lab

el 

1 G3, G4 Alice G3, 

G4 

Cancer G4 High G4 … G4 xxxx

-xx-

xxxx 

G3 

2 G3, G6 Bob G3, 

G6 

Cancer G6 Medium G6 … G6 xxxx

-xx-

xxxx 

G3 

3 G3, G4 Carol G3, 

G4 

Cancer G4 High G4 … G4 xxxx

-xx-

xxxx 

G3 

  

However, when more than one group is obtained from the Assignment table and if the 

groups have a link in the group hierarchy, the node whichever acts as the child (the less privileged 

group) is given to the label columns. We use the Nested Set Model to represent the hierarchies in 

RDBMS and determine the relationship between various nodes. This relationship is given in Table 

5, 6 and a similar Technique that is discussed in Phase III Group Retrieval Query is used to obtain 

the group names. 

Populating attribute information: 

Various users, their attributes, their authentication details, and the associated group names 

are loaded on the Cloud server into the User-Attribute Table and the Group Tables respectively. 

Group Hierarchy in RDBMS: 

The hierarchy of the created groups is stored in the table form using the Nested Set Model 

in the Cloud database. In case of a hierarchical graph structure, the graph is converted into a 
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hierarchical tree and then the Nested Set Model is applied over the obtained tree as indicated in 

Figure 5. 

 

Figure 5. Nested Set Model for Case (i) (top), Hierarchical Graph to Hierarchical tree 

conversion for Case (ii) (bottom left), Nested Set Model for Case (ii) (bottom right) 

PHASE II: Data Producer End - Data Encryption and Insertion 

There are constant data inserts/updates from the producer end, which could be from the 

sensors or directly by the hospital staff observing the corresponding patients. All these data are 

encrypted using appropriate lightweight algorithms and uploaded into the Cloud server. 

PHASE III: Data Consumer End - User Query and Data Retrieval 

User’s actual data query is split into two different queries: i) the group retrieval query based 

on the attributes of the user. It is executed over the User-Attribute table to obtain the attributes, the 

Group Table to determine the attributes’ group and the group hierarchy table to obtain the child 

group(s) ii) the query which is rewritten using the group names obtained from (i). 
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For an example in case (i), let’s assume that a particular login of a user gives the Attributes 

<Oncology, Biopsy, Doctor> from the User-Attribute Table and group G5 from the Group Table. 

The user queries for the Patient ID, Name and other vitals for the Patient ID:2. The query on the 

Nested Set Table [see Table 4, 5] in this case is: 

 

 

 

 

  

The results obtained from Query 1 are G5 and G6. The Query 2 generated by the user gets rewritten 

to Query 3, which gets executed on the modified patient table. Now the Cloud server returns the 

Query 1: Group Retrieval Query 

SELECT DISTINCT b.group_name 

FROM nested_set a, nested_set b 

WHERE a.group_name = 'G5' 

AND b.left_label >= a.left_label 

AND b.right_label <= a.right_label 
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encrypted results of Query 3 to the user’s device, which then decrypts and displays the results to 

the user. 

 

 

 

  

 

 

 

 

 

 

Thus the user successfully retrieves the Name and other vitals of Patient ID:1. If the same 

user queries for the Patient ID, Name and other vitals for the Patient ID:1 or the SSN detail of any 

patient, no data will be retrieved. This is because the group G5 is not entitled to viewing any of 

these data and the rewritten query ensures this access control.   

3.4 Client Side Caching and Attribute based Cache Coherency 

As discussed above, minimal Latency is very important in an IoT Environment. We 

propose a novel Attribute Based Cache Coherency Technique for a Client Side cache. We have a 

remote cloud server from where the data is retrieved from and the local Client cache that stores 

the queried data based on an appropriate invalidation scheme. The invalidation scheme takes into 

Query 2: Actual query 

SELECT Pid, Name, <Vitals> 

FROM Patient 

WHERE Pid = 2 

AND b.right_label <= a.right_label 

 

Query 3: Modified Query 

SELECT Pid, Name, <Vitals> 

FROM Patient 

WHERE Pid = enc(2) 

AND (Pid_label LIKE ‘%G5%’ OR Pid_label LIKE ‘%G6%’) 

AND (Name_label LIKE ‘%G5%’ OR Name_label LIKE ‘%G6%’) 

AND (<Vitals>_label LIKE ‘%G5%’ OR <Vitals>_label LIKE ‘%G6%’) 
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account the fact that different data can be of different criticality to different groups of users. It is 

not really necessary to maintain a uniform Latency across all groups of users. From an end-user’s 

perspective, there are some data that are highly critical while the rest wouldn’t be as critical. When 

we say that a data is critical to the user, we emphasize on a couple of factors: i) the user is expecting 

the most recent version of the data and ii) the user tends to query this data more frequently than 

the other data.  

The conventional Client Side caching stores the recently queried values in the Client’s 

cache and retrieves values from the cache the next time the same query or a subset of the query is 

posed, thus bypassing the communication to the server. When caching comes into picture, a couple 

other factors must also be taken into account – cache replacement policy and cache consistency. 

Given the sufficient memory space in most of the smart devices used to view the data and also 

given the limited number of queries posed by the user in a day, a highly stringent cache 

replacement policy is not desirable. We stick to the traditional LRU based data replacement policy, 

which would be applicable to our scenario as well. On the other hand, there are a variety of 

invalidation Techniques to maintain the consistency of the cached values at the client. Given the 

enormous amount of overhead with the server initiated invalidation Techniques in an IoT 

Environment, we go with the client initiated TTL(Time-To-Live) based invalidation Technique. 

Here the key is that the data in the cache is no longer trustable once the corresponding TTL expires.  

T1 – T2 > TTL 

After the TTL expiration, the client has to fetch the data from the Cloud and the same process goes 

on. However, by considering a uniform TTL for fields across various clients, the problem of a 

huge number of clients in an IoT Environment still exists. The cost of hitting the Cloud is going to 

be the same for all the clients, but the benefit obtained is not the same across all the clients. In 
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order to achieve a better cost-benefit factor, we have to make sure that the clients who might not 

be benefitted by fetching a certain data shouldn’t be spending more than how much that data would 

benefit the client. Based on this, we shall modify the existing TTL invalidation Technique to suit 

our needs. The TTL dictates when the client should reach out for the server and when it has to look 

for data within itself. So if we could tailor the TTL values according to the criticality needs of 

various clients, we can actually reduce the total number of requests hitting the server. Also, the 

cost and the benefit for a particular data for a particular client would be balanced.  

Now the task at hand is to assign TTL values to the various fields. It is completely 

reasonable to assign different TTL values to different fields. Because certain fields like age, 

location, etc., are long lived, while certain fields like the BP, glucose and other vitals would rapidly 

go stale in the cache. Here, there are only two criticality levels: low (data that are long lived) and 

high (data that rapidly change). So a longer TTL value can be assigned to the high critical fields 

and a shorter TTL can be assigned to low critical fields. Similarly, there could be more number of 

criticality levels. We shall further tune the TTL assignment to exploit the granularity in criticality 

of a particular field to a particular user. That is every group of users has a certain tolerance to 

certain kind of data. Considering the variety of roles and the corresponding nature of the job, a 

data cannot be of the same criticality to all groups of users. It should be categorized into a particular 

level of criticality only based on how relevant or important it is to perform the job of a particular 

user group. So based on how critical a particular data is to a particular user group, every user group 

has its own tolerance towards a particular data based on which the criticality is determined. That 

is when a user has more tolerance towards a data, the data is assumed to be less critical for the user 

and the vice versa. Based on this tolerance of a user group (determined by the user’s attributes) to 

a data, we shall tune the TTL of a field in the Client’s cache accordingly. That is when the user 
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group is more tolerant to a particular data field, it means that he can tolerate a certain degree of 

staleness. So it’s wise to assign the user group with a higher TTL value for the given data field. 

Similarly, when a user group is less tolerant to a particular data field, it means that he cannot 

tolerate staleness beyond a very less degree. So we must assign the user group with a lower TTL 

value for the given data field. By doing this, we actually cut down the total number of requests 

going to the Cloud at a given time. This clears traffic for the critical queries that demand data from 

the Cloud server, thus resulting in a comparatively lesser Latency.  

In Table 6, every cell is a grain and the notations used in each cell is used to depict the 

number of subjects belonging to the particular grain. As we discussed above, initially when ABCC 

in not used there are only two grains – low and high. Using ABCC, we try to make these coarse 

grains into fine grains by creating a new grain at every level and moving some people across to 

the newly created grain. C1, C2, C3 etc., are called the Grain constants, which determine how 

many people are moved from the high criticality grain to the newly created medium criticality 

grain. The Grain constants would range from 0.01 to 0.99. In the table the TTL is increasing from 

left to right, with the left most being TTL 0 where the queries always have to go to the server and 

the right most being TTL infinity where the queries always go to the cache. For example, consider 

the field ‘weight’ in an EHR. The field could change somewhat rapidly for someone who is 

undergoing rigorous diet changes or for someone who is under a variety of medications. While, 

this field could be of high criticality to subjects with Attributes <Department: Nutrition, Dietician> 

or other attribute sets who keep track of the weight of the patient constantly, it could be of medium 

criticality to <Department: Nutrition, Medical Students> and could be of low criticality to 

<Department: Admin>. So if we cut down the number of subjects in the high criticality group, the 
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traffic in the Cloud at a time gets reduced and thus the average Latency for a query would also 

decrease as the number of grains increase.  

Table 6. Coarse-grains of Attribute groups to Fine-grains based on data criticality levels 

Number of 

Grains 

Always to 

Server (High 

critical) 

Cache                                                                                                                 y 

(Criticality decreases towards the right) 

N = 2 X Y 

N = 3 (1 - C1).X C1.X Y 

N = 4 (1 - C1).X (1 – C2).C1.X C2.C1.X Y 

N = 5 (1 - C1).X (1 – C2).C1.X (1 – C3).C2.C1.X C3.C2.C1.X Y 

... … … … … … 

 

By implementing this attribute based Client Side caching, we tailor the caching scheme 

according to the user needs. This way, we can ensure better Latency without compromising the 

consistency of the critical data for a user group.   
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CHAPTER 4. PERFORMANCE EVALUATION 

4.1 Experimental Setup 

A basic IoT testbed has to be established to simulate the proposed approach. The actual 

architecture consists of the IoT producer devices, Cloud server and IoT consumer devices. Since 

the implementation is going to remain the same at the IoT producer devices, we form a testbed 

only with the Cloud server and an IoT consumer device. The following platforms were used for 

implementation: i) An Android Asus Google Nexus that is used as an IoT consumer device (the 

Client). It has an in-built local database called the SQLite, which can be used as the local cache 

and ii) Amazon Web Services – Relational Database System (AWS RDS) is used for implementing 

the Cloud server. We assume that the EHR information of the patients collected by the hospital 

staff and the incoming sensor values are stored encrypted in the Cloud. The encryption algorithm 

that is used for encrypting the String data is Advanced Encryption Standard in Cipher Block Chain 

mode (AES-CBC), while the one used for encrypting numerical data is Order Preserving 

Encryption (OPE), which preserves the numerical ordering of plain-texts.  We use it in our 

implementation because when we consider querying over encrypted data, we have to take into 

account the various types of operators that the user may use: =, <>, >, <, >=, <=. BETWEEN, 

LIKE and IN. Now we have adequately encrypted values in the Cloud server, that can cater any 

type of query. The specifications of various components are given in Table 6. A testbed is setup 

using the given components for performing extensive experimentation. 
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Figure 6. Experimental Setup 

To understand our proposed architecture in terms of the evaluation platform, consider the 

following sequence of steps: 

- A user query is sent from the Android device 

- Before sending the user query, the Android device does the following:  

o checks if the data is in the local SQLite database (after making the appropriate cache 

invalidation). If yes, it decrypts and displays the data to the user 

o If no, the device rewrites the existing query and sends it to the Cloud 

- A connection to the Cloud is made from the Android device by establishing a HTTP 

connection between the device and the Cloud using the server’s hostname and port number 

provided by Amazon Web Services 

- Encrypted Query Processing happens over the data on the Cloud and the result is returned 

- The Android device stores the obtained encrypted results in the local cache 

- It then decrypts the data and displays it to the user 
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4.2 Performance Evaluation 

For the evaluation purpose, we run the queries on the main data table on the Cloud 

comprising of a million encrypted rows with 25 actual columns. We append 25 additional 

comparison friendly columns for every actual column. The actual database size is 75 MB with the 

additional columns compromising of around 20MB. The other tables like the assignment table and 

the group table account for a negligible 0.05MB together. Since the Cloud server provides a very 

good amount of storage at a reasonable price, utilizing additional storage to achieve the required 

results wouldn’t be a problem. At the user end, the Android device faces an overhead of … memory 

for the Cache implementation. Given that only the IoT producer devices have resource constraints, 

while the IoT consumer devices have adequate processing and energy capacity these days, we call 

a memory overhead of 50KB (for over 100 records) as negligible.  

The evaluation comprises of a series of experiments to evaluate the efficiency of ABAC 

with the proposed ABCC caching Technique. Obviously, ABAC would give a lower Latency with 

a Client Side cache. The question now is if ABCC could give a relatively lower Latency without 

making a lot of compromises. To perform the regular ABAC with cache (without ABCC) analysis, 

we assume two different kinds of data: critical and non-critical. The critical data always goes to 

the Cloud and the non-critical data hits the cache until the given TTL expires, after which it goes 

to the Cloud and gets the data to the cache. To perform ABAC with cache (with ABCC) analysis, 

we assume more than two different kinds of data. That is, we have varying levels of criticalities 

based on which we vary the ABCC from coarse-grains to fine-grains of TTLs. The TTL to perform 

the cache invalidation is varied from 0 to infinity across various grains. By doing so, for a given 

resource, not all the users come to the Cloud contention at the same time. We assume a total of 

3000 employees in the hospital having access to a particular data and we perform experiments to 
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observe the Latency variations for various number of grains for that particular data [see Figure 7]. 

The minimum number of grains is two and ABAC with cache utilizes this. The results show that 

when the number of grains is increased from two, the average Latency for a given user 

considerably decreases. Also, this experiment is repeated for various factor sizes to observe the 

Latency changes. The following table gives the step by step fragmentation of every grains. Initially 

we assume that out of the 3000 hospital staff who have access to a particular data, 2000 subjects 

query from the cache since the data is critical to them and 1000 subjects query from the cache. 

Then we increase the number of grains at each level, thus creating one additional group at every 

level that compromises of the subjects for whom the data is mid-critical and towards which they 

have a certain amount of tolerance. Table 7 shows the fragmentation of grains and the number of 

subjects belonging to each grain when the grain constant is 0.5. For example, subjects belonging 

to the mid-critical region in (N=3) = 0.5 * subjects belonging to high critical region in (N=2). 

The experiment follows the above way of fine-graining the criticality levels and is repeated 

for various grain constants. We shall observe that for a smaller grain constant (0.25), there is not 

a significant change in Latency. This is due to the fact that only a very less number of subjects are 

moved from lower TTL grain to the next higher TTL grain, resulting in most of the queries going 

to the Cloud server. As the grain constant increases, we shall observe a drastic change in average 

Latency, given that the higher grain constants move more number of subjects from the lower TTL 

grain to the next higher TTL grain. However, the average Latency tends to saturate after a 

particular number of grains. This is due to the fact that after a certain number of grains, there are 

not many subjects to move from the current lower TTL grain to the next higher TTL grain, making 

the lower Latency contributed by the higher TTL grain negligible to the average Latency.   
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Table 7. An Example used for evaluating fine-grained Attribute Groups based on data criticality 

No. of 

Grains 

To 

Server 

To Cache 

(Criticality level decreases towards the right) 

N=2 2000 1000 

N=3 1000 1000 1000 

N=4 1000 500 500 1000 

N=5 1000 500 250 250 1000 

N=6 1000 500 250 125 125 1000 

N=7 1000 500 250 125 62 62 1000 

 

 

Figure 7. Evaluation of Average Latency vs Number of Grains in ABCC 

Yet another important metric that must be analyzed while experimenting on a cache 

consistency Model is staleness. In an IoT Environment, there will not only be INSERTs but there 
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will also be UPDATEs. Thus, we further analyze ABAC with ABCC to determine the various 

staleness percentages by performing the following experiments: 

i) data staleness for increasing number of grains (constant update rate) [see Figure 8] 

ii) data staleness for varying update rates (constant number of grains n) [see Figure 9] 

While performing (i), we vary the grain constants to observe the relationship between staleness 

and the number of grains for different grain constants.  We assume that a data in the Cloud is 

updated for every one second and our Android testbed makes 1 query per second. As we can see, 

as the number of grains increase, the staleness also increases. Because, more number of grains 

means that more the number of subjects using the cache and higher the probability for accessing 

the stale data. However, the staleness is comparatively low and almost remains constant for the 

grain constant = 0.25. This is because the number of subjects belonging to the high critical region 

for grain constant 0.25 are more than the ones belonging to the high critical region for grain 

constants 0.5 and 0.75. More the number of subjects in the high critical regions, lower the overall 

staleness since the staleness faced by the entire high criticality group is almost zero (given that 

these queries always go to the Cloud). Also, for every number of grains we can see that the higher 

grain constant gives the highest staleness. This is because, as the grain constant increases the 

number of subjects in the newly created grain (having higher TTL) also increases. When there are 

more number of subjects using higher TTL for a given data, the probability of these subjects hitting 

stale data is also high. The graph for various grain constants begin to saturate at n=7 or higher. The 

reason is that the number of subjects that we move to the next newly created grain becomes less at 

a certain point after which the staleness contributed by these subjects becomes negligible. 
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Figure 8. Evaluation of Staleness vs Number of Grains in ABCC 

While performing (ii), we keep the number of grains as constant (in our experiment, the number 

of grains = 5). We study the relationship between the staleness and the update rate with different 

grain constants. Undoubtedly, the staleness keeps dropping as the update rate decreases. However, 

there is a significant difference in the staleness percentage for various grain constants for a given 

update rate. This is again due to the fact that the number of subjects in the high critical region 

keeps increasing for increasing grain constants, thus decreasing the overall staleness for the same. 

The graph shows a high staleness percentage for the grain constant 0.75. However, it is to be noted 

that the high critical data always gives the least staleness percentage for a given update rate [see 

Figure 10]. As we can see in the figure, as the criticality decreases the staleness increases since the 

subjects utilizing the lower critical data use the cache for a longer time (due to the higher TTLs) 

than the subjects utilizing the higher critical data. 
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Figure 9. Evaluation of Staleness vs Update Rate in ABCC 

 

 

Figure 10. Evaluation of Average Latency vs Number of Grains in ABCC for various Grain 

constants 
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CHAPTER 5. CONCLUSIONS AND FUTURE WORK 

5.1 Summary 

The recent developments in IoT open doors for the realizing various sectors’ dreams like 

Smart Health, Smart Cities, Smart Homes, etc., However, the security issues in IoT also keeps 

growing with the developments made in IoT. Irrespective of whichever sector adopts IoT, data 

security is very important given the huge amount of distinct and sensitive data being stored in the 

Cloud. The question that is aimed to be answered in the thesis work is “how to provide a fine-

grained access control to the huge volume of data stored in the IoT Cloud?”. To answer this 

question, we first conducted an extensive literature survey on the state-of the-art Access Control 

protocols and Techniques. Once the limitations in adopting certain protocols/Techniques are 

identified, we proposed: an Attribute Based Access Control for IoT RDBMS Cloud for providing 

a fine-grained access control and an Attribute Based Cache Coherency for a minimal average 

Latency. 

This thesis work discusses IoT and its overall architecture by presenting various IoT 

components mainly from the perspective of data security. In Chapter 3, two contributions are 

made: 

• An Attribute Based Access Control (ABAC) Model for IoT data on Cloud Relational 

Databases. It includes an appropriate architecture and an approach for query rewriting with 

encrypted query processing to enforce ABAC. It also deals with the hierarchical 

relationship between various attribute groups and incorporates Nested Set Model to deal 

with various possible hierarchical structures 
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• A novel Attribute Based Cache Coherency (ABCC) approach that utilizes a Client Side 

caching Technique and exploits the ‘different data – different users – different criticality’ 

nature of the IoT data. Under this approach, we also try to make fine-grained criticality 

levels of data based on users’ attributes and tailor the TTL based cache invalidation scheme 

to provide better Latency performance. We introduce the term grain constant and vary it 

under different Environments to analyze its impact on Latency performance 

The proposed Techniques are implemented using the experimental setup and evaluated 

using extensive experiments. A comparison is made between the ABAC with ABCC and without 

ABCC in terms of average Latency and staleness. We can infer from the experiments that,  

• ABAC with ABCC gives better average Latency as the number of grains increases. 

However, practically after a certain number of grains, the average Latency starts to saturate 

given that the number of subjects in the newly created grains is very less. Thus, if an 

organization has a lot of diverse IoT data, where a given data is highly critical only to a 

certain number of users we can make the grain constant higher, thus resulting in less 

average Latency. 

• In case of staleness in case of ABCC, lesser grain constants give less staleness percentage 

while the higher grain constants give a higher staleness percentage. However, we can also 

see that the staleness percentage also saturates after a certain number of grains.  

• The grain contributing to the higher staleness percentage is the low criticality grain. Based 

on the following practical assumptions, we can call the higher staleness due to the low 

critical grain negligible: i) the people belonging to the low critical grain has good amount 

of tolerance to the data and ii) the people tend to query the low critical data only 

occasionally. Even if the given data is highly critical only to a large number of users we 
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can make the grain constant smaller but still achieve a comparatively lesser Latency against 

ABAC without ABCC. 

5.2 Future Work 

 This works considers the IoT RDBMS data on the Cloud and addresses the access control 

and Latency problems prevalent in IoT. The potential future works could be: 

• Scaling the proposed idea to a large number of organizations. This work considers the fact 

that the IoT data on the Cloud is shared by multiple parties inside an Organization. IoT 

data, nowadays is shared among various organizations to achieve interoperability and also 

get a lot of meaningful insights.  

• Implementing the ABAC with ABCC Technique for non-relational databases. IoT data are 

now increasingly stored in NoSQL given its scalability and flexibility. So an appropriate 

mechanism to achieve Access Control and better Latency in a NoSQL Environment could 

be a valuable extension of the current work. 

• Enforcing ‘Write’ or ‘*’ property, since the current work focuses only on the ‘Read’ 

property. In this way, we can restrict only the authorized users to modify/update the 

existing dataset, thus preserving data integrity. 

 

 

 

 

 



www.manaraa.com

44 

 

REFERENCES 

1. Schoenberger CR, Upbin B. The internet of things. Forbes Magazine. 2002 Mar 

18;169(6):155-60.  

2. Shah SH, Yaqoob I. A survey: Internet of Things (IOT) technologies, applications and 

challenges. In Smart Energy Grid Engineering (SEGE), 2016 IEEE 2016 Aug 21 (pp. 381-

385). IEEE. 

3. Ronen E, O’Flynn C, Shamir A, Weingarten AO. IoT goes nuclear: Creating a ZigBee 

chain reaction. Weizmann Institute of Science, Tech. Rep. 2016 Nov. 

4. Nawir M, Amir A, Yaakob N, Lynn OB. Internet of Things (IoT): Taxonomy of security 

attacks. In Electronic Design (ICED), 2016 3rd International Conference on 2016 Aug 11 

(pp. 321-326). IEEE. 

5. Kaye K. FTC: fitness Apps can help you shred calories–and privacy. Online: http://adage. 

com/article/privacy-and-regulation/ftc-signals-focus-health-fitness-data-privacy/293080. 

2014. 

6. Miorandi D, Sicari S, De Pellegrini F, Chlamtac I. Internet of things: Vision, applications 

and research challenges. Ad Hoc Networks. 2012 Sep 30;10(7):1497-516. 

7. Alasmari S, Anwar M. Security & Privacy Challenges in IoT-Based Health Cloud. In 

Computational Science and Computational Intelligence (CSCI), 2016 International 

Conference on 2016 Dec 15 (pp. 198-201). IEEE. 

8. HIPAA Guide to Privacy and Security of Electronic Health Information 

https://www.healthit.gov/sites/default/files/pdf/privacy/privacy-and-security-guide.pdf 

9. Goyal TK, Sahula V. Lightweight security algorithm for low power IoT devices. In 

Advances in Computing, Communications and Informatics (ICACCI), 2016 International 

Conference on 2016 Sep 21 (pp. 1725-1729). IEEE. 

10. Kuusijärvi J, Savola R, Savolainen P, Evesti A. Mitigating IoT security threats with a 

trusted Network element. In Internet Technology and Secured Transactions (ICITST), 

2016 11th International Conference for 2016 Dec 5 (pp. 260-265). IEEE. 

11. Sivaraman V, Gharakheili HH, Vishwanath A, Boreli R, Mehani O. Network-level security    

and privacy control for smart-home IoT devices. In Wireless and Mobile Computing, 



www.manaraa.com

45 

 

Networking and Communications (WiMob), 2015 IEEE 11th International Conference on 

2015 Oct 19 (pp. 163-167). IEEE. 

12. Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A, Robshaw MJ, Seurin Y, 

Vikkelsoe C. PRESENT: An ultra-lightweight block cipher. In International Workshop on 

Cryptographic Hardware and Embedded Systems 2007 Sep 10 (pp. 450-466). Springer 

Berlin Heidelberg. 

13. Google Cloud Database. Security and Integration with Google Cloud.  [Online] 

November, 2015: https://cloud.google.com/sql/ (accessed November 20, 2015). 

14. Guan Z, Li J, Wu L, Zhang Y, Wu J, Du X. Achieving Efficient and Secure Data 

Acquisition for Cloud-supported Internet of Things in Smart Grid. IEEE Internet of 

Things Journal. 2017 Apr 3. 

15. Alasmari S, Anwar M. Security & Privacy Challenges in IoT-Based Health Cloud. In 

Computational Science and Computational Intelligence (CSCI), 2016 International 

Conference on 2016 Dec 15 (pp. 198-201). IEEE. 

16. Horton M, Chen L, Samanta B. Enhancing the security of IoT enabled robotics: 

Protecting TurtleBot file system and communication. In Computing, Networking and 

Communications (ICNC), 2017 International Conference on 2017 Jan 26 (pp. 662-666). 

IEEE. 

17. Rushby J. The bell and la padula security Model. Computer Science Laboratory, SRI 

International, Menlo Park, CA. 1986. 

18. Miller MS, Yee KP, Shapiro J. Capability myths demolished. Technical Report 

SRL2003-02, Johns Hopkins University Systems Research Laboratory, 2003. 

http://www. erights. org/elib/capability/duals; 2003 Mar. 

19. Sandhu RS. Role-based access control. Advances in computers. 1998 Dec 31; 46:237-86. 

20. Zhou L, Varadharajan V, Hitchens M. Integrating trust with cryptographic role-based 

access control for secure cloud data storage. In Trust, Security and Privacy in Computing 

and Communications (TrustCom), 2013 12th IEEE International Conference on 2013 Jul 

16 (pp. 560-569). IEEE. 

21. Zhou L, Varadharajan V, Hitchens M. Achieving secure role-based access control on 

encrypted data in cloud storage. IEEE transactions on information forensics and security. 

2013 Dec;8(12):1947-60. 



www.manaraa.com

46 

 

22. Elliott A, Knight S. Role Explosion: Acknowledging the Problem. In Software 

Engineering Research and Practice 2010 Jul (pp. 349-355). 

23. Goyal V, Pandey O, Sahai A, Waters B. Attribute-based encryption for fine-grained 

access control of encrypted data. In Proceedings of the 13th ACM conference on 

Computer and communications security 2006 Oct 30 (pp. 89-98). Acm. 

24. Zhu Y, Huang D, Hu CJ, Wang X. From RBAC to ABAC: constructing flexible data 

access control for cloud storage services. IEEE Transactions on Services Computing. 

2015 Jul 1;8(4):601-16. 

25. Riad K, Yan Z, Hu H, Ahn GJ. AR-ABAC: A New Attribute Based Access Control 

Model Supporting Attribute-Rules for Cloud Computing. In Collaboration and Internet 

Computing (CIC), 2015 IEEE Conference on 2015 Oct 27 (pp. 28-35). IEEE. 

26. Balamurugan B, Shivitha NG, Monisha V, Saranya V. A Honey Bee behaviour inspired 

novel Attribute-based access control using enhanced Bell-Lapadula Model in cloud 

computing. In Innovation Information in Computing Technologies (ICIICT), 2015 

International Conference on 2015 Feb 19 (pp. 1-6). IEEE. 

27. Liu Z, Jiang ZL, Wang X, Yiu SM, Zhang C, Zhao X. Dynamic Attribute-Based Access 

Control in Cloud Storage Systems. In Trustcom/BigDataSE/I SPA, 2016 IEEE 2016 Aug 

23 (pp. 129-137). IEEE. 

28. Lv Z, Chi J, Zhang M, Feng D. Efficiently attribute-based access control for mobile cloud 

storage system. In Trust, Security and Privacy in Computing and Communications 

(TrustCom), 2014 IEEE 13th International Conference on 2014 Sep 24 (pp. 292-299). 

IEEE. 

29. Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption. In 

Security and Privacy, 2007. SP'07. IEEE Symposium on 2007 May 20 (pp. 321-334). 

IEEE. 

30. Attrapadung N, Libert B, De Panafieu E. Expressive key-policy attribute-based 

encryption with constant-size ciphertexts. In International Workshop on Public Key 

Cryptography 2011 Mar 6 (pp. 90-108). Springer Berlin Heidelberg. 

31. Wang G, Liu Q, Wu J. Hierarchical attribute-based encryption for fine-grained access 

control in cloud storage services. In Proceedings of the 17th ACM conference on 

Computer and communications security 2010 Oct 4 (pp. 735-737). ACM. 



www.manaraa.com

47 

 

32. Hur J, Noh DK. Attribute-based access control with efficient revocation in data 

outsourcing systems. IEEE Transactions on Parallel and Distributed Systems. 2011 

Jul;22(7):1214-21. 

33. Yang K, Jia X, Ren K. Attribute-based fine-grained access control with efficient 

revocation in cloud storage systems. In Proceedings of the 8th ACM SIGSAC 

symposium on Information, computer and communications security 2013 May 8 (pp. 

523-528). ACM. 

34. Yao X, Chen Z, Tian Y. A lightweight attribute-based encryption scheme for the Internet 

of Things. Future Generation Computer Systems. 2015 Aug 31; 49:104-12. 

35. Jo M, Odelu V, Das AK, Khan MK, Choo KK. Expressive CP-ABE Scheme for Mobile 

Devices in IoT satisfying Constant-size Keys and Ciphertexts. IEEE Access. 2017 Feb 

16. 

36. Guo F, Mu Y, Susilo W, Wong DS, Varadharajan V. CP-ABE with constant-size keys for 

lightweight devices. IEEE transactions on information forensics and security. 2014 

May;9(5):763-71. 

37. Sarfraz MI, Nabeel M, Cao J, Bertino E. DBMask: fine-grained access control on 

encrypted relational databases. In Proceedings of the 5th ACM Conference on Data and 

Application Security and Privacy 2015 Mar 2 (pp. 1-11). ACM. 

38. Popa RA, Redfield C, Zeldovich N, Balakrishnan H. CryptDB: protecting confidentiality 

with encrypted query processing. InProceedings of the Twenty-Third ACM Symposium 

on Operating Systems Principles 2011 Oct 23 (pp. 85-100). ACM. 

39. Popa RA, Redfield C, Zeldovich N, Balakrishnan H. CryptDB: processing queries on an 

encrypted database. Communications of the ACM. 2012 Sep 1;55(9):103-11. 

40. Shafagh H, Hithnawi A, Dröscher A, Duquennoy S, Hu W. Talos: Encrypted query 

processing for the internet of things. In Proceedings of the 13th ACM Conference on 

Embedded Networked Sensor Systems 2015 Nov 1 (pp. 197-210). ACM. 

41. Zhang Y, Li D, Zhu Z. A server side caching system for efficient web map services. In 

Embedded Software and Systems Symposia, 2008. ICESS Symposia'08. International 

Conference on 2008 Jul 29 (pp. 32-37). IEEE. 



www.manaraa.com

48 

 

42. Zeng Z, Veeravalli B. Hk/T: A novel server-side web caching strategy for multimedia 

applications. In Communications, 2008. ICC'08. IEEE International Conference on 2008 

May 19 (pp. 1782-1786). IEEE. 

43. Keller AM, Basu J. A predicate-based caching scheme for client-server database 

architectures. The VLDB Journal—The International Journal on Very Large Data Bases. 

1996 Jan 1;5(1):035-47. 

44. Al Ridhawi I, Mostafa N, Masri W. Client-Side Partial File Caching for Cloud-Based 

Systems. In Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, 

Scalable Computing and Communications, Cloud and Big Data Computing, Internet of 

People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 

2016 Intl IEEE Conferences 2016 Jul 18 (pp. 909-914). IEEE. 

45. Liu X, Ma Y, Liu Y, Xie T, Huang G. Demystifying the imperfect client-side cache 

performance of mobile web browsing. IEEE Transactions on Mobile Computing. 2016 

Sep 1;15(9):2206-20. 

46. Froese KW, Bunt RB. The effect of client caching on file server workloads. In System 

Sciences, 1996., Proceedings of the Twenty-Ninth Hawaii International Conference on, 

1996 Jan 3 (Vol. 1, pp. 150-159). IEEE. 

47. Wu CC, Fang JF, Hung PC. A counter-based cache invalidation scheme for mobile 

Environments with stateless servers. In Communications, Computers and signal 

Processing, 2003. PACRIM. 2003 IEEE Pacific Rim Conference on 2003 Aug 28 (Vol. 2, 

pp. 623-626). IEEE. 

48. Chand N, Joshi R, Misra M. Efficient cache invalidation in mobile Environment. In India 

Annual Conference, 2004. Proceedings of the IEEE INDICON 2004. First 2004 Dec 20 

(pp. 107-112). IEEE. 

49. Chand N, Joshi RC, Misra M. Energy efficient cache invalidation in wireless mobile 

Environment. In Personal Wireless Communications, 2005. ICPWC 2005. 2005 IEEE 

International Conference on 2005 Jan 23 (pp. 244-248). IEEE. 

50. Ahmad NM, Geok TK. Enhanced client polling with multilevel pre-fetching algorithm 

for wireless networks. Journal of Communications and Networks. 2007 Mar;9(1):43-9. 

51. Alici S, Altingovde IS, Ozcan R, Cambazoglu BB, Ulusoy Ö. Timestamp-based result 

cache invalidation for web search engines. In Proceedings of the 34th international ACM 



www.manaraa.com

49 

 

SIGIR conference on Research and development in Information Retrieval 2011 Jul 24 

(pp. 973-982). ACM. 

52. Blanco R, Bortnikov E, Junqueira F, Lempel R, Telloli L, Zaragoza H. Caching search 

engine results over incremental indices. In Proceedings of the 33rd international ACM 

SIGIR conference on Research and development in information retrieval 2010 Jul 19 (pp. 

82-89). ACM. 

53. Fawaz K, Artail H. DCIM: Distributed cache invalidation method for maintaining cache 

consistency in wireless mobile networks. IEEE Transactions on Mobile Computing. 2013 

Apr;12(4):680-93. 

54. Shukla SS, Ingle YS. Cache maintenance using distributed cache invalidation method and 

time to live mechanism in wireless mobile network. In Engineering and Technology 

(ICETECH), 2015 IEEE International Conference on 2015 Mar 20 (pp. 1-4). IEEE. 

55. Alici S, Altingovde IS, Ozcan R, Cambazoglu BB, Ulusoy Ö. Adaptive time-to-live 

strategies for query result caching in web search engines. In European Conference on 

Information Retrieval 2012 Apr 1 (pp. 401-412). Springer Berlin Heidelberg. 

56. Chatterjee D, Tari Z, Zomaya A. A task-based adaptive TTL approach for web server 

load balancing. In Computers and Communications, 2005. ISCC 2005. Proceedings. 10th 

IEEE Symposium on 2005 Jun 27 (pp. 877-884). IEEE. 

 


	2017
	Fine-Grained Access Control with Attribute Based Cache Coherency for IoT with application to Healthcare
	Piranava Tamilselvan
	Recommended Citation


	tmp.1510777811.pdf.h5DJ_

